--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-1B tags: - generated_from_trainer metrics: - accuracy model-index: - name: defect-classification-llama-baseline-20-epochs-MAIL-10 results: [] --- # defect-classification-llama-baseline-20-epochs-MAIL-10 This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2900 - Accuracy: 0.9038 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1536 - eval_batch_size: 1536 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.4632 | 1.0 | 354 | 1.3609 | 0.7587 | | 0.9761 | 2.0 | 708 | 0.9344 | 0.7947 | | 0.8105 | 3.0 | 1062 | 0.7649 | 0.8222 | | 0.6766 | 4.0 | 1416 | 0.6937 | 0.8392 | | 0.5973 | 5.0 | 1770 | 0.5825 | 0.8467 | | 0.5265 | 6.0 | 2124 | 0.5075 | 0.8545 | | 0.4848 | 7.0 | 2478 | 0.4811 | 0.8639 | | 0.4463 | 8.0 | 2832 | 0.4465 | 0.8620 | | 0.4195 | 9.0 | 3186 | 0.4131 | 0.8724 | | 0.3934 | 10.0 | 3540 | 0.4131 | 0.8752 | | 0.3712 | 11.0 | 3894 | 0.3667 | 0.8830 | | 0.3549 | 12.0 | 4248 | 0.3582 | 0.8882 | | 0.341 | 13.0 | 4602 | 0.3344 | 0.8925 | | 0.3274 | 14.0 | 4956 | 0.3270 | 0.8930 | | 0.319 | 15.0 | 5310 | 0.3154 | 0.8961 | | 0.306 | 16.0 | 5664 | 0.3068 | 0.8986 | | 0.3054 | 17.0 | 6018 | 0.3027 | 0.9000 | | 0.2947 | 18.0 | 6372 | 0.2974 | 0.9011 | | 0.293 | 19.0 | 6726 | 0.2925 | 0.9030 | | 0.2952 | 20.0 | 7080 | 0.2900 | 0.9038 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0