Adds config and model file for pipeline.
Browse files- config.json +19 -0
- model.py +19 -0
config.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_type": "llama",
|
3 |
+
"model_path": "meta-llama/Llama-3.2-1B",
|
4 |
+
"num_labels": 4,
|
5 |
+
"head_dim": 64,
|
6 |
+
"hidden_size": 2048,
|
7 |
+
"id2label": {
|
8 |
+
"0": "None",
|
9 |
+
"1": "Keyhole",
|
10 |
+
"2": "Lack of Fusion",
|
11 |
+
"3": "Balling"
|
12 |
+
},
|
13 |
+
"label2id": {
|
14 |
+
"None": 0,
|
15 |
+
"Keyhole": 1,
|
16 |
+
"Lack of Fusion": 2,
|
17 |
+
"Balling": 3
|
18 |
+
}
|
19 |
+
}
|
model.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
from transformers import AutoModel, PreTrainedModel
|
3 |
+
|
4 |
+
class LlamaClassificationModel(PreTrainedModel):
|
5 |
+
def __init__(self, config):
|
6 |
+
super().__init__(config)
|
7 |
+
self.base_model = AutoModel.from_pretrained(config.model_path, config=config)
|
8 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
9 |
+
self.config = config
|
10 |
+
|
11 |
+
def forward(self, input_ids, attention_mask, labels=None):
|
12 |
+
outputs = self.base_model(input_ids=input_ids, attention_mask=attention_mask)
|
13 |
+
summed_representation = outputs.last_hidden_state.sum(dim=1)
|
14 |
+
logits = self.classifier(summed_representation)
|
15 |
+
loss = None
|
16 |
+
if labels is not None:
|
17 |
+
loss_fn = nn.BCEWithLogitsLoss()
|
18 |
+
loss = loss_fn(logits, labels.float())
|
19 |
+
return {"loss": loss, "logits": logits}
|