Updates model.py.
Browse files
model.py
CHANGED
@@ -1,38 +1,19 @@
|
|
1 |
import torch.nn as nn
|
2 |
-
import
|
3 |
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
NUM_LABELS = 4
|
7 |
-
|
8 |
-
# Model with frozen LLaMA weights
|
9 |
-
class LlamaClassificationModel(nn.Module):
|
10 |
-
def __init__(self, model_path = "meta-llama/Llama-3.2-1B", freeze_weights = True):
|
11 |
-
super(LlamaClassificationModel, self).__init__()
|
12 |
-
self.base_model = AutoModel.from_pretrained(model_path)
|
13 |
-
|
14 |
-
# For push to hub.
|
15 |
-
self.config = self.base_model.config
|
16 |
-
print(self.base_model.config)
|
17 |
-
|
18 |
-
# Freeze the base model's weights
|
19 |
-
if freeze_weights:
|
20 |
-
for param in self.base_model.parameters():
|
21 |
-
param.requires_grad = False
|
22 |
-
|
23 |
-
# Add a classification head
|
24 |
-
self.classifier = nn.Linear(self.base_model.config.hidden_size, NUM_LABELS)
|
25 |
-
|
26 |
def forward(self, input_ids, attention_mask, labels=None):
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
# Sum hidden states over the sequence dimension
|
31 |
-
summed_representation = outputs.last_hidden_state.sum(dim=1) # Summing over sequence length
|
32 |
-
|
33 |
-
logits = self.classifier(summed_representation) # Pass the summed representation to the classifier
|
34 |
loss = None
|
35 |
if labels is not None:
|
36 |
loss_fn = nn.BCEWithLogitsLoss()
|
37 |
loss = loss_fn(logits, labels.float())
|
38 |
-
return {"loss": loss, "logits": logits}
|
|
|
1 |
import torch.nn as nn
|
2 |
+
from transformers import AutoModel, PreTrainedModel
|
3 |
|
4 |
+
class LlamaClassificationModel(PreTrainedModel):
|
5 |
+
def __init__(self, config):
|
6 |
+
super().__init__(config)
|
7 |
+
self.base_model = AutoModel.from_pretrained(config.model_path, config=config)
|
8 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
9 |
+
self.config = config
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
def forward(self, input_ids, attention_mask, labels=None):
|
12 |
+
outputs = self.base_model(input_ids=input_ids, attention_mask=attention_mask)
|
13 |
+
summed_representation = outputs.last_hidden_state.sum(dim=1)
|
14 |
+
logits = self.classifier(summed_representation)
|
|
|
|
|
|
|
|
|
15 |
loss = None
|
16 |
if labels is not None:
|
17 |
loss_fn = nn.BCEWithLogitsLoss()
|
18 |
loss = loss_fn(logits, labels.float())
|
19 |
+
return {"loss": loss, "logits": logits}
|