--- library_name: transformers base_model: allenai/scibert_scivocab_uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: defect-classification-scibert-prompt-05-epochs results: [] --- # defect-classification-scibert-prompt-05-epochs This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4094 - Accuracy: 0.8078 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 768 - eval_batch_size: 768 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 0.3562 | 1.0 | 53084 | 0.4182 | 0.8043 | | 0.3518 | 2.0 | 106168 | 0.3997 | 0.8114 | | 0.3501 | 3.0 | 159252 | 0.4120 | 0.8073 | | 0.3459 | 4.0 | 212336 | 0.4094 | 0.8067 | | 0.3463 | 5.0 | 265420 | 0.4094 | 0.8078 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0