---
library_name: sklearn
tags:
- sklearn
- skops
- tabular-regression
model_format: pickle
model_file: hw4_mar25_regressor_iter.pkl
widget:
- structuredData:
households:
- 417.6640955085236
- 236.0
- 246.0
housing_median_age:
- 49.0
- 31.0
- 17.0
latitude:
- 38.22334594673302
- 36.20969180851678
- 32.85
longitude:
- -122.19
- -121.51
- -115.57
median_income:
- 3.555094529227091
- 6.6112
- 1.7411
ocean_proximity_<1H OCEAN:
- 0.0
- 0.0
- 0.0
ocean_proximity_INLAND:
- 0.022188959848072953
- 1.0
- 1.0
ocean_proximity_ISLAND:
- 0.0
- 0.0
- 0.0
ocean_proximity_NEAR BAY:
- 1.0
- 0.0
- -0.015350581382989892
ocean_proximity_NEAR OCEAN:
- 0.0
- 0.0
- 0.0
population:
- 790.0
- 542.0
- 728.0
total_bedrooms:
- 447.86922111956846
- 217.0
- 256.0
total_rooms:
- 1728.58177384804
- 3518.385768850101
- 580.5334906827775
---
# Model description
[More Information Needed]
## Intended uses & limitations
[More Information Needed]
## Training Procedure
[More Information Needed]
### Hyperparameters
Click to expand
| Hyperparameter | Value |
|--------------------------|---------------|
| bootstrap | True |
| ccp_alpha | 0.0 |
| criterion | squared_error |
| max_depth | |
| max_features | 1.0 |
| max_leaf_nodes | |
| max_samples | |
| min_impurity_decrease | 0.0 |
| min_samples_leaf | 1 |
| min_samples_split | 2 |
| min_weight_fraction_leaf | 0.0 |
| monotonic_cst | |
| n_estimators | 100 |
| n_jobs | |
| oob_score | False |
| random_state | 42 |
| verbose | 0 |
| warm_start | False |
RandomForestRegressor(random_state=42)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
RandomForestRegressor(random_state=42)