File size: 1,979 Bytes
e322bf4 ecd1d66 e322bf4 ecd1d66 e322bf4 fe7816e e322bf4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
---
base_model: unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit
library_name: transformers
model_name: pr4nav101/Llama-3.1-8B-4bit-bnb-Math-Finetuned
dataset: pr4nav101/math_coding_dataset_for_finetuning.
tags:
- generated_from_trainer
- unsloth
- trl
- sft
licence: license
---
# Model Card for outputs
This model is a fine-tuned version of [unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit](https://huggingface.co/unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Dataset:
[pr4nav101/math_coding_dataset_for_finetuning](https://huggingface.co/datasets/pr4nav101/math_coding_dataset_for_finetuning)
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="pr4nav101/Llama-3.1-8B-4bit-bnb-Math-Finetuned", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/pr4nav_101/huggingface/runs/czcq7rdw)
This model was trained with SFT.
### Framework versions
- TRL: 0.13.0
- Transformers: 4.47.0
- Pytorch: 2.5.1+cu121
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |