|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch IndicTrans config.""" |
|
|
|
import json |
|
from collections import OrderedDict |
|
from typing import Any, Mapping, Optional |
|
|
|
from transformers import PreTrainedTokenizer |
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.onnx import OnnxConfig, OnnxSeq2SeqConfigWithPast |
|
from transformers.onnx.utils import compute_effective_axis_dimension |
|
from transformers.utils import TensorType, is_torch_available |
|
|
|
|
|
|
|
class RotaryIndicTransConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`IT2Model`]. It is used to instantiate an |
|
IT2 model according to the specified arguments, defining the model architecture. Instantiating a configuration |
|
with the defaults will yield a similar configuration to that of the IT2 |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 50265): |
|
Vocabulary size of the IT2 model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`IT2Model`] or |
|
d_model (`int`, *optional*, defaults to 1024): |
|
Dimensionality of the layers and the pooler layer. |
|
encoder_layers (`int`, *optional*, defaults to 12): |
|
Number of encoder layers. |
|
decoder_layers (`int`, *optional*, defaults to 12): |
|
Number of decoder layers. |
|
encoder_attention_heads (`int`, *optional*, defaults to 16): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
decoder_attention_heads (`int`, *optional*, defaults to 16): |
|
Number of attention heads for each attention layer in the Transformer decoder. |
|
decoder_ffn_dim (`int`, *optional*, defaults to 4096): |
|
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. |
|
encoder_ffn_dim (`int`, *optional*, defaults to 4096): |
|
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. |
|
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"silu"` and `"gelu_new"` are supported. |
|
dropout (`float`, *optional*, defaults to 0.1): |
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the attention probabilities. |
|
activation_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for activations inside the fully connected layer. |
|
classifier_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for classifier. |
|
max_position_embeddings (`int`, *optional*, defaults to 1024): |
|
The maximum sequence length that this model might ever be used with. Typically set this to something large |
|
just in case (e.g., 512 or 1024 or 2048). |
|
init_std (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
encoder_layerdrop (`float`, *optional*, defaults to 0.0): |
|
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) |
|
for more details. |
|
decoder_layerdrop (`float`, *optional*, defaults to 0.0): |
|
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) |
|
for more details. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). |
|
```""" |
|
model_type = "RotaryIndicTrans" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
attribute_map = { |
|
"num_attention_heads": "encoder_attention_heads", |
|
"hidden_size": "d_model", |
|
} |
|
|
|
def __init__( |
|
self, |
|
encoder_vocab_size=None, |
|
decoder_vocab_size=None, |
|
encoder_embed_dim=512, |
|
decoder_embed_dim=512, |
|
encoder_layers=6, |
|
encoder_ffn_dim=2048, |
|
encoder_attention_heads=8, |
|
decoder_layers=6, |
|
decoder_ffn_dim=2048, |
|
decoder_attention_heads=8, |
|
encoder_layerdrop=0.00, |
|
decoder_layerdrop=0.00, |
|
use_cache=True, |
|
is_encoder_decoder=True, |
|
activation_function="relu", |
|
encoder_normalize_before=False, |
|
decoder_normalize_before=False, |
|
layernorm_embedding=False, |
|
share_decoder_input_output_embed=False, |
|
dropout=0.1, |
|
attention_dropout=0.0, |
|
activation_dropout=0.0, |
|
init_std=0.02, |
|
scale_embedding=True, |
|
decoder_start_token_id=2, |
|
pad_token_id=1, |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
attn_implementation="eager", |
|
rope_args={"theta": 10000}, |
|
**kwargs, |
|
): |
|
self.encoder_vocab_size = encoder_vocab_size |
|
self.decoder_vocab_size = decoder_vocab_size |
|
self.encoder_normalize_before = encoder_normalize_before |
|
self.decoder_normalize_before = decoder_normalize_before |
|
self.layernorm_embedding = layernorm_embedding |
|
self.encoder_embed_dim = encoder_embed_dim |
|
self.decoder_embed_dim = decoder_embed_dim |
|
self.encoder_ffn_dim = encoder_ffn_dim |
|
self.encoder_layers = encoder_layers |
|
self.encoder_attention_heads = encoder_attention_heads |
|
self.decoder_ffn_dim = decoder_ffn_dim |
|
self.decoder_layers = decoder_layers |
|
self.decoder_attention_heads = decoder_attention_heads |
|
self.dropout = dropout |
|
self.attention_dropout = attention_dropout |
|
self.activation_dropout = activation_dropout |
|
self.activation_function = activation_function |
|
self.init_std = init_std |
|
self.encoder_layerdrop = encoder_layerdrop |
|
self.decoder_layerdrop = decoder_layerdrop |
|
self.use_cache = use_cache |
|
self.rope_args = rope_args |
|
self.num_hidden_layers = encoder_layers |
|
self.scale_embedding = scale_embedding |
|
self.share_decoder_input_output_embed = share_decoder_input_output_embed |
|
self.attn_implementation = attn_implementation |
|
|
|
super().__init__( |
|
pad_token_id=pad_token_id, |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
is_encoder_decoder=is_encoder_decoder, |
|
decoder_start_token_id=decoder_start_token_id, |
|
**kwargs, |
|
) |
|
|
|
|
|
class RotaryIndicTransOnnxConfig(OnnxSeq2SeqConfigWithPast): |
|
@property |
|
def inputs(self) -> Mapping[str, Mapping[int, str]]: |
|
common_inputs = OrderedDict( |
|
[ |
|
("input_ids", {0: "batch", 1: "encoder_sequence"}), |
|
("attention_mask", {0: "batch", 1: "encoder_sequence"}), |
|
] |
|
) |
|
|
|
if self.use_past: |
|
common_inputs["decoder_input_ids"] = {0: "batch"} |
|
common_inputs["decoder_attention_mask"] = { |
|
0: "batch", |
|
1: "past_decoder_sequence + sequence", |
|
} |
|
else: |
|
common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"} |
|
common_inputs["decoder_attention_mask"] = { |
|
0: "batch", |
|
1: "decoder_sequence", |
|
} |
|
|
|
if self.use_past: |
|
self.fill_with_past_key_values_(common_inputs, direction="inputs") |
|
return common_inputs |
|
|
|
|
|
|
|
|
|
|
|
def _generate_dummy_inputs_for_sequence_classification_and_question_answering( |
|
self, |
|
tokenizer: PreTrainedTokenizer, |
|
batch_size: int = -1, |
|
seq_length: int = -1, |
|
is_pair: bool = False, |
|
framework: Optional[TensorType] = None, |
|
) -> Mapping[str, Any]: |
|
|
|
|
|
|
|
batch_size = compute_effective_axis_dimension( |
|
batch_size, |
|
fixed_dimension=OnnxConfig.default_fixed_batch, |
|
num_token_to_add=0, |
|
) |
|
|
|
|
|
token_to_add = tokenizer.num_special_tokens_to_add(is_pair) |
|
seq_length = compute_effective_axis_dimension( |
|
seq_length, |
|
fixed_dimension=OnnxConfig.default_fixed_sequence, |
|
num_token_to_add=token_to_add, |
|
) |
|
|
|
|
|
dummy_input = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size |
|
common_inputs = dict(tokenizer(dummy_input, return_tensors=framework)) |
|
return common_inputs |
|
|
|
|
|
def _generate_dummy_inputs_for_default_and_seq2seq_lm( |
|
self, |
|
tokenizer: PreTrainedTokenizer, |
|
batch_size: int = -1, |
|
seq_length: int = -1, |
|
is_pair: bool = False, |
|
framework: Optional[TensorType] = None, |
|
) -> Mapping[str, Any]: |
|
encoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( |
|
tokenizer, batch_size, seq_length, is_pair, framework |
|
) |
|
|
|
|
|
decoder_seq_length = seq_length if not self.use_past else 1 |
|
decoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( |
|
tokenizer, batch_size, decoder_seq_length, is_pair, framework |
|
) |
|
decoder_inputs = { |
|
f"decoder_{name}": tensor for name, tensor in decoder_inputs.items() |
|
} |
|
common_inputs = dict(**encoder_inputs, **decoder_inputs) |
|
|
|
if self.use_past: |
|
if not is_torch_available(): |
|
raise ValueError( |
|
"Cannot generate dummy past_keys inputs without PyTorch installed." |
|
) |
|
else: |
|
import torch |
|
batch, encoder_seq_length = common_inputs["input_ids"].shape |
|
decoder_seq_length = common_inputs["decoder_input_ids"].shape[1] |
|
( |
|
num_encoder_attention_heads, |
|
num_decoder_attention_heads, |
|
) = self.num_attention_heads |
|
encoder_shape = ( |
|
batch, |
|
num_encoder_attention_heads, |
|
encoder_seq_length, |
|
self._config.hidden_size // num_encoder_attention_heads, |
|
) |
|
decoder_past_length = decoder_seq_length + 3 |
|
decoder_shape = ( |
|
batch, |
|
num_decoder_attention_heads, |
|
decoder_past_length, |
|
self._config.hidden_size // num_decoder_attention_heads, |
|
) |
|
|
|
common_inputs["decoder_attention_mask"] = torch.cat( |
|
[ |
|
common_inputs["decoder_attention_mask"], |
|
torch.ones(batch, decoder_past_length), |
|
], |
|
dim=1, |
|
) |
|
|
|
common_inputs["past_key_values"] = [] |
|
|
|
num_encoder_layers, num_decoder_layers = self.num_layers |
|
min_num_layers = min(num_encoder_layers, num_decoder_layers) |
|
max_num_layers = ( |
|
max(num_encoder_layers, num_decoder_layers) - min_num_layers |
|
) |
|
remaining_side_name = ( |
|
"encoder" if num_encoder_layers > num_decoder_layers else "decoder" |
|
) |
|
|
|
for _ in range(min_num_layers): |
|
common_inputs["past_key_values"].append( |
|
( |
|
torch.zeros(decoder_shape), |
|
torch.zeros(decoder_shape), |
|
torch.zeros(encoder_shape), |
|
torch.zeros(encoder_shape), |
|
) |
|
) |
|
|
|
shape = encoder_shape if remaining_side_name == "encoder" else decoder_shape |
|
for _ in range(min_num_layers, max_num_layers): |
|
common_inputs["past_key_values"].append( |
|
(torch.zeros(shape), torch.zeros(shape)) |
|
) |
|
return common_inputs |
|
|
|
generate_dummy_inputs = _generate_dummy_inputs_for_default_and_seq2seq_lm |
|
|