import math
from typing import List, Optional, Tuple, Union

import torch
import torch.nn as nn
from torch.nn import functional as F
from transformers.activations import ACT2FN

from transformers.modeling_attn_mask_utils import (
    _prepare_4d_attention_mask,
    _prepare_4d_attention_mask_for_sdpa,
    _prepare_4d_causal_attention_mask,
    _prepare_4d_causal_attention_mask_for_sdpa,
)

from transformers.integrations.deepspeed import is_deepspeed_zero3_enabled
from transformers.modeling_outputs import (
    BaseModelOutput,
    BaseModelOutputWithPastAndCrossAttentions,
    Seq2SeqLMOutput,
    Seq2SeqModelOutput,
)

from transformers.utils import logging
from einops import rearrange, repeat

from torch.amp import autocast
from torch import einsum

from transformers.modeling_utils import PreTrainedModel
from .configuration_rotary_indictrans import RotaryIndicTransConfig

from flash_attn import flash_attn_func, flash_attn_varlen_func
from flash_attn.bert_padding import (
    index_first_axis,
    pad_input,
    unpad_input,
)

logger = logging.get_logger(__name__)
device = "cuda" if torch.cuda.is_available() else "cpu"


# Copied from transformers.models.llama.modeling_llama._get_unpad_data
def _get_unpad_data(attention_mask):
    seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
    indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
    max_seqlen_in_batch = seqlens_in_batch.max().item()
    cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
    return (
        indices,
        cu_seqlens,
        max_seqlen_in_batch,
    )


# Copied from transformers.models.bart.modeling_bart.shift_tokens_right
def shift_tokens_right(
    input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int
):
    shifted_input_ids = input_ids.new_zeros(input_ids.shape)
    shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
    shifted_input_ids[:, 0] = decoder_start_token_id

    if pad_token_id is None:
        raise ValueError("self.model.config.pad_token_id has to be defined.")

    shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
    return shifted_input_ids


def create_position_ids_from_input_ids(
    input_ids, padding_idx, past_key_values_length=0
):
    mask = input_ids.ne(padding_idx).int()
    incremental_indices = (
        torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length
    ) * mask
    return incremental_indices.long() + padding_idx


def rotate_half(x):
    x = rearrange(x, "... (d r) -> ... d r", r=2)
    x1, x2 = x.unbind(dim=-1)
    x = torch.stack((-x2, x1), dim=-1)
    return rearrange(x, "... d r -> ... (d r)")


@autocast("cuda", enabled=False)
def apply_rotary_emb(cos, sin, t):
    rot_dim = cos.shape[-1]
    assert rot_dim <= t.shape[-1] and cos.shape == sin.shape
    t_left, t_right = t[..., :rot_dim], t[..., rot_dim:]
    t_transformed = (t_left * cos) + (rotate_half(t_left) * sin)
    return torch.cat((t_transformed, t_right), dim=-1).type(t.dtype)


class RotaryEmbedding(torch.nn.Module):
    def __init__(
        self, dim, theta=10000, interpolate_factor=1.0, cache_max_seq_len=8192
    ):
        super().__init__()

        freqs_ = 1.0 / (theta ** (torch.arange(0, dim, 2).float() / dim))
        self.cache_max_seq_len = cache_max_seq_len
        self.interpolate_factor = interpolate_factor

        self.freqs = torch.nn.Parameter(freqs_, requires_grad=False).to(device)
        self.apply_rotary_emb = staticmethod(apply_rotary_emb)
        self.precompute_freqs(cache_max_seq_len)

    def precompute_freqs(self, max_seq_len):
        thetas = self.forward(max_seq_len, device=device)
        self.register_buffer("cached_cos", thetas.cos(), persistent=False)
        self.register_buffer("cached_sin", thetas.sin(), persistent=False)

    def rotate_queries_or_keys(self, t, seq_dim=-2, offset=0):
        seq_len = t.shape[seq_dim]

        if seq_len > self.cache_max_seq_len:
            self.cache_max_seq_len = seq_len * 2
            self.precompute_freqs(self.cache_max_seq_len)

        cos, sin = (
            self.cached_cos[offset : (offset + seq_len)],
            self.cached_sin[offset : (offset + seq_len)],
        )
        return apply_rotary_emb(cos, sin, t)

    @autocast("cuda", enabled=False)
    def forward(self, seq_len, device):
        seq = torch.arange(seq_len, device=device) / self.interpolate_factor
        thetas = einsum("..., f -> ... f", seq, self.freqs)
        thetas = repeat(thetas, "... n -> ... (n r)", r=2)
        return thetas


# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->RotaryIndicTrans
class RotaryIndicTransAttention(nn.Module):
    def __init__(
        self,
        embed_dim: int,
        num_heads: int,
        dropout: float = 0.0,
        is_decoder: bool = False,
        bias: bool = True,
        is_causal: bool = False,
        is_cross_attention: bool = False,
        config: Optional[RotaryIndicTransConfig] = None,
    ):
        super().__init__()
        self.config = config
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.dropout = dropout
        self.head_dim = embed_dim // num_heads

        if (self.head_dim * num_heads) != self.embed_dim:
            raise ValueError(
                f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
                f" and `num_heads`: {num_heads})."
            )
        self.scaling = self.head_dim**-0.5
        self.is_decoder = is_decoder
        self.is_causal = is_causal

        # partial rotation in RoPE
        self.rotary_pos_embed = (
            RotaryEmbedding(
                dim=self.head_dim // 2,
                theta=config.rope_args.get("theta", 10000),
                interpolate_factor=config.rope_args.get("interpolate_factor", 1.0),
            )
            if not is_cross_attention
            else None
        )

        self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)

    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return (
            tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
            .transpose(1, 2)
            .contiguous()
        )

    def _apply_rotary_pos_emb(self, q, k, is_inference=False):
        q = rearrange(q, "(b h) t d -> b h t d", h=self.num_heads)
        k = rearrange(k, "(b h) t d -> b h t d", h=self.num_heads)

        offset = (k.shape[-2] - 1) if is_inference else 0

        q = self.rotary_pos_embed.rotate_queries_or_keys(q, offset=offset)
        k = self.rotary_pos_embed.rotate_queries_or_keys(k)

        q = rearrange(q, "b h t d -> (b h) t d")
        k = rearrange(k, "b h t d -> (b h) t d")
        return q, k

    def forward(
        self,
        hidden_states: torch.Tensor,
        key_value_states: Optional[torch.Tensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        attention_mask: Optional[torch.Tensor] = None,
        layer_head_mask: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        """Input shape: Batch x Time x Channel"""

        is_cross_attention = key_value_states is not None

        bsz, tgt_len, _ = hidden_states.size()

        query_states = self.q_proj(hidden_states) * self.scaling

        if (
            is_cross_attention
            and past_key_value is not None
            and past_key_value[0].shape[2] == key_value_states.shape[1]
        ):
            key_states = past_key_value[0]
            value_states = past_key_value[1]
        elif is_cross_attention:
            key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
            value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
        elif past_key_value is not None:
            key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
            value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
            key_states = torch.cat([past_key_value[0], key_states], dim=2)
            value_states = torch.cat([past_key_value[1], value_states], dim=2)
        else:
            key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
            value_states = self._shape(self.v_proj(hidden_states), -1, bsz)

        if self.is_decoder:
            past_key_value = (key_states, value_states)

        proj_shape = (bsz * self.num_heads, -1, self.head_dim)
        query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
        key_states = key_states.reshape(*proj_shape)
        value_states = value_states.reshape(*proj_shape)

        src_len = key_states.size(1)

        if self.rotary_pos_embed is not None:
            query_states, key_states = self._apply_rotary_pos_emb(
                query_states, key_states, is_inference=past_key_value is not None
            )

        attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))

        if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
            raise ValueError(
                f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
                f" {attn_weights.size()}"
            )

        if attention_mask is not None:
            if attention_mask.size() != (bsz, 1, tgt_len, src_len):
                raise ValueError(
                    f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
                )
            attn_weights = (
                attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
                + attention_mask
            )
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

        attn_weights = F.softmax(attn_weights, dim=-1)

        if layer_head_mask is not None:
            if layer_head_mask.size() != (self.num_heads,):
                raise ValueError(
                    f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
                    f" {layer_head_mask.size()}"
                )
            attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(
                bsz, self.num_heads, tgt_len, src_len
            )
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

        if output_attentions:
            attn_weights_reshaped = attn_weights.view(
                bsz, self.num_heads, tgt_len, src_len
            )
            attn_weights = attn_weights_reshaped.view(
                bsz * self.num_heads, tgt_len, src_len
            )
        else:
            attn_weights_reshaped = None

        attn_probs = F.dropout(attn_weights, p=self.dropout, training=self.training)

        attn_output = torch.bmm(attn_probs, value_states)

        if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
                f" {attn_output.size()}"
            )

        attn_output = rearrange(
            attn_output, "(b h) t d -> b t (h d)", h=self.num_heads, d=self.head_dim
        )

        attn_output = self.out_proj(attn_output)
        return attn_output, attn_weights_reshaped, past_key_value


class RotaryIndicTransFlashAttention2(RotaryIndicTransAttention):
    # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

    def _reshape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim)

    def forward(
        self,
        hidden_states: torch.Tensor,
        key_value_states: Optional[torch.Tensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        attention_mask: Optional[torch.Tensor] = None,
        layer_head_mask: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        # RotaryIndicTransFlashAttention2 attention does not support output_attentions
        if output_attentions:
            raise ValueError(
                "RotaryIndicTransFlashAttention2 attention does not support output_attentions"
            )

        is_cross_attention = key_value_states is not None

        bsz, q_len, _ = hidden_states.size()

        query_states = self._reshape(self.q_proj(hidden_states), -1, bsz)

        if (
            is_cross_attention
            and past_key_value is not None
            and past_key_value[0].shape[2] == key_value_states.shape[1]
        ):
            key_states = past_key_value[0].transpose(1, 2)
            value_states = past_key_value[1].transpose(1, 2)
        elif is_cross_attention:
            key_states = self._reshape(self.k_proj(key_value_states), -1, bsz)
            value_states = self._reshape(self.v_proj(key_value_states), -1, bsz)
        elif past_key_value is not None:
            key_states = self._reshape(self.k_proj(hidden_states), -1, bsz)
            value_states = self._reshape(self.v_proj(hidden_states), -1, bsz)
            key_states = torch.cat(
                [past_key_value[0].transpose(1, 2), key_states], dim=1
            )
            value_states = torch.cat(
                [past_key_value[1].transpose(1, 2), value_states], dim=1
            )
        else:
            key_states = self._reshape(self.k_proj(hidden_states), -1, bsz)
            value_states = self._reshape(self.v_proj(hidden_states), -1, bsz)

        if self.is_decoder:
            past_key_value = (key_states.transpose(1, 2), value_states.transpose(1, 2))

        kv_seq_len = key_states.shape[-2]
        if past_key_value is not None:
            kv_seq_len += past_key_value[0].shape[-2]

        input_dtype = query_states.dtype
        if input_dtype == torch.float32:
            if torch.is_autocast_enabled():
                target_dtype = torch.get_autocast_gpu_dtype()
            # Handle the case where the model is quantized
            elif hasattr(self.config, "_pre_quantization_dtype"):
                target_dtype = self.config._pre_quantization_dtype
            else:
                target_dtype = self.q_proj.weight.dtype

            logger.warning_once(
                f"The input hidden states seems to be silently casted in float32, this might be related to"
                f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
                f" {target_dtype}."
            )

            query_states = query_states.to(target_dtype)
            key_states = key_states.to(target_dtype)
            value_states = value_states.to(target_dtype)

        if self.rotary_pos_embed is not None:
            query_states, key_states = self._apply_rotary_pos_emb(
                query_states, key_states, is_inference=past_key_value is not None
            )

        attn_output = self._flash_attention_forward(
            query_states,
            key_states,
            value_states,
            attention_mask,
            q_len,
            dropout=self.dropout,
        )

        attn_output = attn_output.reshape(bsz, q_len, -1)
        attn_output = self.out_proj(attn_output)

        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights, past_key_value

    # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
    def _flash_attention_forward(
        self,
        query_states,
        key_states,
        value_states,
        attention_mask,
        query_length,
        dropout=0.0,
        softmax_scale=None,
    ):
        """
        Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
        first unpad the input, then computes the attention scores and pad the final attention scores.

        Args:
            query_states (`torch.Tensor`):
                Input query states to be passed to Flash Attention API
            key_states (`torch.Tensor`):
                Input key states to be passed to Flash Attention API
            value_states (`torch.Tensor`):
                Input value states to be passed to Flash Attention API
            attention_mask (`torch.Tensor`):
                The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
                position of padding tokens and 1 for the position of non-padding tokens.
            dropout (`float`):
                Attention dropout
            softmax_scale (`float`, *optional*):
                The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
        """
        # Contains at least one padding token in the sequence
        if attention_mask is not None:
            batch_size = query_states.shape[0]
            (
                query_states,
                key_states,
                value_states,
                indices_q,
                cu_seq_lens,
                max_seq_lens,
            ) = self._upad_input(
                query_states, key_states, value_states, attention_mask, query_length
            )

            cu_seqlens_q, cu_seqlens_k = cu_seq_lens
            max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens

            attn_output_unpad = flash_attn_varlen_func(
                query_states,
                key_states,
                value_states,
                cu_seqlens_q=cu_seqlens_q,
                cu_seqlens_k=cu_seqlens_k,
                max_seqlen_q=max_seqlen_in_batch_q,
                max_seqlen_k=max_seqlen_in_batch_k,
                dropout_p=dropout,
                softmax_scale=softmax_scale,
                causal=self.is_causal,
            )

            attn_output = pad_input(
                attn_output_unpad, indices_q, batch_size, query_length
            )
        else:
            attn_output = flash_attn_func(
                query_states,
                key_states,
                value_states,
                dropout,
                softmax_scale=softmax_scale,
                causal=self.is_causal,
            )

        return attn_output

    # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input
    def _upad_input(
        self, query_layer, key_layer, value_layer, attention_mask, query_length
    ):
        indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
        batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape

        key_layer = index_first_axis(
            key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
            indices_k,
        )
        value_layer = index_first_axis(
            value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
            indices_k,
        )
        if query_length == kv_seq_len:
            query_layer = index_first_axis(
                query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim),
                indices_k,
            )
            cu_seqlens_q = cu_seqlens_k
            max_seqlen_in_batch_q = max_seqlen_in_batch_k
            indices_q = indices_k
        elif query_length == 1:
            max_seqlen_in_batch_q = 1
            cu_seqlens_q = torch.arange(
                batch_size + 1, dtype=torch.int32, device=query_layer.device
            )
            indices_q = cu_seqlens_q[:-1]
            query_layer = query_layer.squeeze(1)
        else:
            attention_mask = attention_mask[:, -query_length:]
            query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
                query_layer, attention_mask
            )

        return (
            query_layer,
            key_layer,
            value_layer,
            indices_q,
            (cu_seqlens_q, cu_seqlens_k),
            (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
        )


class RotaryIndicTransSdpaAttention(RotaryIndicTransAttention):
    def forward(
        self,
        hidden_states: torch.Tensor,
        key_value_states: Optional[torch.Tensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        attention_mask: Optional[torch.Tensor] = None,
        layer_head_mask: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        """Input shape: Batch x Time x Channel"""
        if output_attentions or layer_head_mask is not None:
            logger.warning_once(
                "RotaryIndicTransModel is using RotaryIndicTransSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` or `layer_head_mask` not None. Falling back to the manual attention"
                ' implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
            )
            return super().forward(
                hidden_states,
                key_value_states=key_value_states,
                past_key_value=past_key_value,
                attention_mask=attention_mask,
                layer_head_mask=layer_head_mask,
                output_attentions=output_attentions,
            )

        is_cross_attention = key_value_states is not None

        bsz, tgt_len, _ = hidden_states.size()

        query_states = self.q_proj(hidden_states)

        if (
            is_cross_attention
            and past_key_value is not None
            and past_key_value[0].shape[2] == key_value_states.shape[1]
        ):
            key_states = past_key_value[0]
            value_states = past_key_value[1]
        elif is_cross_attention:
            key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
            value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
        elif past_key_value is not None:
            key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
            value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
            key_states = torch.cat([past_key_value[0], key_states], dim=2)
            value_states = torch.cat([past_key_value[1], value_states], dim=2)
        else:
            key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
            value_states = self._shape(self.v_proj(hidden_states), -1, bsz)

        if self.is_decoder:
            past_key_value = (key_states, value_states)

        query_states = self._shape(query_states, tgt_len, bsz)

        if self.rotary_pos_embed is not None:
            query_states, key_states = self._apply_rotary_pos_emb(
                query_states, key_states, is_inference=past_key_value is not None
            )

        attn_output = F.scaled_dot_product_attention(
            query_states,
            key_states,
            value_states,
            attn_mask=attention_mask,
            dropout_p=self.dropout if self.training else 0.0,
            is_causal=self.is_causal and attention_mask is None and tgt_len > 1,
        )

        if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
                f" {attn_output.size()}"
            )

        attn_output = rearrange(
            attn_output, "b h t d -> b t (h d)", h=self.num_heads, d=self.head_dim
        )
        attn_output = self.out_proj(attn_output)
        return attn_output, None, past_key_value


ROTARY_INDICTRANS_ATTENTION_CLASSES = {
    "eager": RotaryIndicTransAttention,
    "sdpa": RotaryIndicTransSdpaAttention,
    "flash_attention_2": RotaryIndicTransFlashAttention2,
}


# Copied from transformers.models.mbart.modeling_mbart.MBartEncoderLayer with MBart->RotaryIndicTrans
class RotaryIndicTransEncoderLayer(nn.Module):
    def __init__(self, config: RotaryIndicTransConfig):
        super().__init__()
        self.embed_dim = config.encoder_embed_dim
        self.self_attn = ROTARY_INDICTRANS_ATTENTION_CLASSES[
            config._attn_implementation
        ](
            embed_dim=self.embed_dim,
            num_heads=config.encoder_attention_heads,
            dropout=config.attention_dropout,
            config=config,
        )
        self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
        self.dropout = config.dropout
        self.activation_fn = ACT2FN[config.activation_function]
        self.activation_dropout = config.activation_dropout
        self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
        self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
        self.final_layer_norm = nn.LayerNorm(self.embed_dim)
        self.normalize_before = config.encoder_normalize_before

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: torch.Tensor,
        layer_head_mask: torch.Tensor,
        output_attentions: bool = False,
    ) -> torch.Tensor:
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`): attention mask of size
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
            layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
                `(encoder_attention_heads,)`.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
        """
        residual = hidden_states
        if self.normalize_before:
            hidden_states = self.self_attn_layer_norm(hidden_states)
        hidden_states, attn_weights, _ = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            layer_head_mask=layer_head_mask,
            output_attentions=output_attentions,
        )
        hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states
        if not self.normalize_before:
            hidden_states = self.self_attn_layer_norm(hidden_states)

        residual = hidden_states
        if self.normalize_before:
            hidden_states = self.final_layer_norm(hidden_states)
        hidden_states = self.activation_fn(self.fc1(hidden_states))
        hidden_states = F.dropout(
            hidden_states, p=self.activation_dropout, training=self.training
        )
        hidden_states = self.fc2(hidden_states)
        hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states
        if not self.normalize_before:
            hidden_states = self.final_layer_norm(hidden_states)

        if hidden_states.dtype == torch.float16 and (
            torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
        ):
            clamp_value = torch.finfo(hidden_states.dtype).max - 1000
            hidden_states = torch.clamp(
                hidden_states, min=-clamp_value, max=clamp_value
            )

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (attn_weights,)

        return outputs


# Copied from transformers.models.mbart.modeling_mbart.MBartDecoderLayer with MBart->RotaryIndicTrans
class RotaryIndicTransDecoderLayer(nn.Module):
    def __init__(self, config: RotaryIndicTransConfig):
        super().__init__()
        self.embed_dim = config.decoder_embed_dim

        self.self_attn = ROTARY_INDICTRANS_ATTENTION_CLASSES[
            config._attn_implementation
        ](
            embed_dim=self.embed_dim,
            num_heads=config.decoder_attention_heads,
            dropout=config.attention_dropout,
            is_decoder=True,
            is_causal=True,
            config=config,
        )
        self.dropout = config.dropout
        self.activation_fn = ACT2FN[config.activation_function]
        self.activation_dropout = config.activation_dropout

        self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
        self.encoder_attn = ROTARY_INDICTRANS_ATTENTION_CLASSES[
            config._attn_implementation
        ](
            self.embed_dim,
            config.decoder_attention_heads,
            dropout=config.attention_dropout,
            is_cross_attention=True,
            is_decoder=True,
            config=config,
        )
        self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
        self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
        self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
        self.final_layer_norm = nn.LayerNorm(self.embed_dim)
        self.normalize_before = config.decoder_normalize_before

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        layer_head_mask: Optional[torch.Tensor] = None,
        cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = True,
    ) -> torch.Tensor:
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`): attention mask of size
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
            encoder_hidden_states (`torch.FloatTensor`):
                cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
            encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
            layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
                `(encoder_attention_heads,)`.
            cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
                size `(decoder_attention_heads,)`.
            past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
        """
        residual = hidden_states
        if self.normalize_before:
            hidden_states = self.self_attn_layer_norm(hidden_states)

        self_attn_past_key_value = (
            past_key_value[:2] if past_key_value is not None else None
        )

        hidden_states, self_attn_weights, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            past_key_value=self_attn_past_key_value,
            attention_mask=attention_mask,
            layer_head_mask=layer_head_mask,
            output_attentions=output_attentions,
        )
        hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states
        if not self.normalize_before:
            hidden_states = self.self_attn_layer_norm(hidden_states)

        cross_attn_present_key_value = None
        cross_attn_weights = None
        if encoder_hidden_states is not None:
            residual = hidden_states
            if self.normalize_before:
                hidden_states = self.encoder_attn_layer_norm(hidden_states)

            cross_attn_past_key_value = (
                past_key_value[-2:] if past_key_value is not None else None
            )
            (
                hidden_states,
                cross_attn_weights,
                cross_attn_present_key_value,
            ) = self.encoder_attn(
                hidden_states=hidden_states,
                key_value_states=encoder_hidden_states,
                attention_mask=encoder_attention_mask,
                layer_head_mask=cross_attn_layer_head_mask,
                past_key_value=cross_attn_past_key_value,
                output_attentions=output_attentions,
            )
            hidden_states = F.dropout(
                hidden_states, p=self.dropout, training=self.training
            )
            hidden_states = residual + hidden_states
            if not self.normalize_before:
                hidden_states = self.encoder_attn_layer_norm(hidden_states)

            present_key_value = present_key_value + cross_attn_present_key_value

        residual = hidden_states
        if self.normalize_before:
            hidden_states = self.final_layer_norm(hidden_states)
        hidden_states = self.activation_fn(self.fc1(hidden_states))
        hidden_states = F.dropout(
            hidden_states, p=self.activation_dropout, training=self.training
        )
        hidden_states = self.fc2(hidden_states)
        hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states
        if not self.normalize_before:
            hidden_states = self.final_layer_norm(hidden_states)

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights, cross_attn_weights)

        if use_cache:
            outputs += (present_key_value,)

        return outputs


# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100PretrainedModel->RotaryIndicTrans
class RotaryIndicTransPreTrainedModel(PreTrainedModel):
    config_class = RotaryIndicTransConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["RotaryIndicTransAttention"]

    def _init_weights(self, module):
        std = self.config.init_std
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, (RotaryIndicTransDecoder, RotaryIndicTransEncoder)):
            module.gradient_checkpointing = value


# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100EncoderLayer->RotaryIndicTrans
class RotaryIndicTransEncoder(RotaryIndicTransPreTrainedModel):
    def __init__(
        self,
        config: RotaryIndicTransConfig,
        embed_tokens: Optional[nn.Embedding] = None,
    ):
        super().__init__(config)

        self.dropout = config.dropout
        self.layerdrop = config.encoder_layerdrop

        embed_dim = config.encoder_embed_dim
        self.padding_idx = config.pad_token_id
        self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0

        self.embed_tokens = nn.Embedding(
            config.encoder_vocab_size, embed_dim, self.padding_idx
        )

        if embed_tokens is not None:
            self.embed_tokens.weight = embed_tokens.weight

        self.layers = nn.ModuleList(
            [RotaryIndicTransEncoderLayer(config) for _ in range(config.encoder_layers)]
        )
        self.layer_norm = (
            nn.LayerNorm(embed_dim) if config.encoder_normalize_before else None
        )
        self.layernorm_embedding = (
            nn.LayerNorm(embed_dim) if config.layernorm_embedding else None
        )

        self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
        self._use_sdpa = config._attn_implementation == "sdpa"

        self.gradient_checkpointing = False
        self.post_init()

    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ):
        r"""
        Args:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
                provide it.

                Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
                [`PreTrainedTokenizer.__call__`] for details.

                [What are input IDs?](../glossary#input-ids)
            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

                [What are attention masks?](../glossary#attention-mask)
            head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
                Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:

                - 1 indicates the head is **not masked**,
                - 0 indicates the head is **masked**.

            inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
                Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
                This is useful if you want more control over how to convert `input_ids` indices into associated vectors
                than the model's internal embedding lookup matrix.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more detail.
            return_dict (`bool`, *optional*):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        """
        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError(
                "You cannot specify both input_ids and inputs_embeds at the same time"
            )
        elif input_ids is not None:
            self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
            input_shape = input_ids.size()
            input_ids = input_ids.view(-1, input_shape[-1])
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale

        hidden_states = inputs_embeds

        if self.layernorm_embedding is not None:
            hidden_states = self.layernorm_embedding(hidden_states)
        hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)

        if attention_mask is not None:
            if self._use_flash_attention_2:
                attention_mask = attention_mask if 0 in attention_mask else None
            elif self._use_sdpa and head_mask is None and not output_attentions:
                attention_mask = _prepare_4d_attention_mask_for_sdpa(
                    attention_mask, inputs_embeds.dtype
                )
            else:
                attention_mask = _prepare_4d_attention_mask(
                    attention_mask, inputs_embeds.dtype
                )

        encoder_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None

        if head_mask is not None:
            if head_mask.size()[0] != len(self.layers):
                raise ValueError(
                    f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
                    f" {head_mask.size()[0]}."
                )
        deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()

        for idx, encoder_layer in enumerate(self.layers):
            if output_hidden_states:
                encoder_states = encoder_states + (hidden_states,)

            dropout_probability = torch.rand([])

            skip_the_layer = (
                True
                if self.training and (dropout_probability < self.layerdrop)
                else False
            )
            if not skip_the_layer or deepspeed_zero3_is_enabled:
                if self.gradient_checkpointing and self.training:

                    def create_custom_forward(module):
                        def custom_forward(*inputs):
                            return module(*inputs, output_attentions)

                        return custom_forward

                    layer_outputs = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(encoder_layer),
                        hidden_states,
                        attention_mask,
                        (head_mask[idx] if head_mask is not None else None),
                    )
                else:
                    layer_outputs = encoder_layer(
                        hidden_states,
                        attention_mask,
                        layer_head_mask=(
                            head_mask[idx] if head_mask is not None else None
                        ),
                        output_attentions=output_attentions,
                    )

                hidden_states = layer_outputs[0]

            if skip_the_layer:
                layer_outputs = (None, None)

            if output_attentions:
                all_attentions = all_attentions + (layer_outputs[1],)

        if self.layer_norm is not None:
            hidden_states = self.layer_norm(hidden_states)

        if output_hidden_states:
            encoder_states = encoder_states + (hidden_states,)

        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, encoder_states, all_attentions]
                if v is not None
            )
        return BaseModelOutput(
            last_hidden_state=hidden_states,
            hidden_states=encoder_states,
            attentions=all_attentions,
        )


# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100DecoderLayer->RotaryIndicTrans
class RotaryIndicTransDecoder(RotaryIndicTransPreTrainedModel):
    def __init__(
        self,
        config: RotaryIndicTransConfig,
        embed_tokens: Optional[nn.Embedding] = None,
    ):
        super().__init__(config)
        self.dropout = config.dropout
        self.layerdrop = config.decoder_layerdrop

        embed_dim = config.encoder_embed_dim
        self.padding_idx = config.pad_token_id
        self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0

        self.embed_tokens = nn.Embedding(
            config.decoder_vocab_size, embed_dim, self.padding_idx
        )

        if embed_tokens is not None:
            self.embed_tokens.weight = embed_tokens.weight

        self.layers = nn.ModuleList(
            [RotaryIndicTransDecoderLayer(config) for _ in range(config.decoder_layers)]
        )
        self.layer_norm = (
            nn.LayerNorm(embed_dim) if config.decoder_normalize_before else None
        )
        self.layernorm_embedding = (
            nn.LayerNorm(embed_dim) if config.layernorm_embedding else None
        )

        self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
        self._use_sdpa = config._attn_implementation == "sdpa"

        self.gradient_checkpointing = False
        self.post_init()

    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        cross_attn_head_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ):
        r"""
        Args:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
                provide it.

                Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
                [`PreTrainedTokenizer.__call__`] for details.

                [What are input IDs?](../glossary#input-ids)
            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

                [What are attention masks?](../glossary#attention-mask)
            encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
                Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
                of the decoder.
            encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
                Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
                selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

                [What are attention masks?](../glossary#attention-mask)
            head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
                Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:

                - 1 indicates the head is **not masked**,
                - 0 indicates the head is **masked**.

            cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
                Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
                cross-attention on hidden heads. Mask values selected in `[0, 1]`:

                - 1 indicates the head is **not masked**,
                - 0 indicates the head is **masked**.

            past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
                Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
                shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
                shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.

                Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
                cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.

                If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
                that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
                all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of
                shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing
                `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more
                control over how to convert `input_ids` indices into associated vectors than the model's internal
                embedding lookup matrix.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more detail.
            return_dict (`bool`, *optional*):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        """
        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError(
                "You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
            )
        elif input_ids is not None:
            input_shape = input_ids.size()
            input_ids = input_ids.view(-1, input_shape[-1])
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError(
                "You have to specify either decoder_input_ids or decoder_inputs_embeds"
            )

        past_key_values_length = (
            past_key_values[0][0].shape[2] if past_key_values is not None else 0
        )

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale

        if self._use_flash_attention_2:
            attention_mask = (
                attention_mask
                if (attention_mask is not None and 0 in attention_mask)
                else None
            )
        elif self._use_sdpa and not output_attentions and cross_attn_head_mask is None:
            attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
                attention_mask,
                input_shape,
                inputs_embeds,
                past_key_values_length,
            )
        else:
            attention_mask = _prepare_4d_causal_attention_mask(
                attention_mask, input_shape, inputs_embeds, past_key_values_length
            )

        if encoder_hidden_states is not None and encoder_attention_mask is not None:
            if self._use_flash_attention_2:
                encoder_attention_mask = (
                    encoder_attention_mask if 0 in encoder_attention_mask else None
                )
            elif (
                self._use_sdpa
                and cross_attn_head_mask is None
                and not output_attentions
            ):
                encoder_attention_mask = _prepare_4d_attention_mask_for_sdpa(
                    encoder_attention_mask,
                    inputs_embeds.dtype,
                    tgt_len=input_shape[-1],
                )
            else:
                encoder_attention_mask = _prepare_4d_attention_mask(
                    encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
                )

        hidden_states = inputs_embeds

        if self.layernorm_embedding is not None:
            hidden_states = self.layernorm_embedding(hidden_states)

        hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)

        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting"
                    " `use_cache=False`..."
                )
                use_cache = False

        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        all_cross_attentions = () if output_attentions else None
        next_decoder_cache = () if use_cache else None

        for attn_mask, mask_name in zip(
            [head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]
        ):
            if attn_mask is not None:
                if attn_mask.size()[0] != len(self.layers):
                    raise ValueError(
                        f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
                        f" {head_mask.size()[0]}."
                    )
        deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()

        for idx, decoder_layer in enumerate(self.layers):
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            dropout_probability = torch.rand([])

            skip_the_layer = (
                True
                if self.training and (dropout_probability < self.layerdrop)
                else False
            )
            if not skip_the_layer or deepspeed_zero3_is_enabled:
                past_key_value = (
                    past_key_values[idx] if past_key_values is not None else None
                )

                if self.gradient_checkpointing and self.training:

                    def create_custom_forward(module):
                        def custom_forward(*inputs):
                            # None for past_key_value
                            return module(*inputs, output_attentions, use_cache)

                        return custom_forward

                    layer_outputs = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(decoder_layer),
                        hidden_states,
                        attention_mask,
                        encoder_hidden_states,
                        encoder_attention_mask,
                        head_mask[idx] if head_mask is not None else None,
                        (
                            cross_attn_head_mask[idx]
                            if cross_attn_head_mask is not None
                            else None
                        ),
                        None,
                    )
                else:
                    layer_outputs = decoder_layer(
                        hidden_states,
                        attention_mask=attention_mask,
                        encoder_hidden_states=encoder_hidden_states,
                        encoder_attention_mask=encoder_attention_mask,
                        layer_head_mask=(
                            head_mask[idx] if head_mask is not None else None
                        ),
                        cross_attn_layer_head_mask=(
                            cross_attn_head_mask[idx]
                            if cross_attn_head_mask is not None
                            else None
                        ),
                        past_key_value=past_key_value,
                        output_attentions=output_attentions,
                        use_cache=use_cache,
                    )

                hidden_states = layer_outputs[0]

            if skip_the_layer:
                continue

            if use_cache:
                next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)

            if output_attentions:
                all_self_attns += (layer_outputs[1],)
                all_cross_attentions += (layer_outputs[2],)

        if self.layer_norm is not None:
            hidden_states = self.layer_norm(hidden_states)

        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = next_decoder_cache if use_cache else None
        if not return_dict:
            return tuple(
                v
                for v in [
                    hidden_states,
                    next_cache,
                    all_hidden_states,
                    all_self_attns,
                    all_cross_attentions,
                ]
                if v is not None
            )
        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
            cross_attentions=all_cross_attentions,
        )


# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100Model->RotaryIndicTrans
class RotaryIndicTransModel(RotaryIndicTransPreTrainedModel):
    _tied_weights_keys = None

    def __init__(self, config: RotaryIndicTransConfig):
        super().__init__(config)

        self.encoder = RotaryIndicTransEncoder(config)
        self.decoder = RotaryIndicTransDecoder(config)
        self.post_init()

    def get_encoder(self):
        return self.encoder

    def get_decoder(self):
        return self.decoder

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        decoder_head_mask: Optional[torch.Tensor] = None,
        cross_attn_head_mask: Optional[torch.Tensor] = None,
        encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.Tensor], Seq2SeqModelOutput]:
        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        if encoder_outputs is None:
            encoder_outputs = self.encoder(
                input_ids=input_ids,
                attention_mask=attention_mask,
                head_mask=head_mask,
                inputs_embeds=inputs_embeds,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )
        elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
            encoder_outputs = BaseModelOutput(
                last_hidden_state=encoder_outputs[0],
                hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
                attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
            )

        decoder_outputs = self.decoder(
            input_ids=decoder_input_ids,
            attention_mask=decoder_attention_mask,
            encoder_hidden_states=encoder_outputs[0],
            encoder_attention_mask=attention_mask,
            head_mask=decoder_head_mask,
            cross_attn_head_mask=cross_attn_head_mask,
            past_key_values=past_key_values,
            inputs_embeds=decoder_inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        if not return_dict:
            return decoder_outputs + encoder_outputs

        return Seq2SeqModelOutput(
            last_hidden_state=decoder_outputs.last_hidden_state,
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
        )


# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100ForConditionalGeneration->RotaryIndicTrans
class RotaryIndicTransForConditionalGeneration(RotaryIndicTransPreTrainedModel):
    base_model_prefix = "model"
    _tied_weights_keys = None
    _label_smoothing = 0.0

    def __init__(self, config: RotaryIndicTransConfig):
        super().__init__(config)
        self.model = RotaryIndicTransModel(config)
        self.lm_head = nn.Linear(
            config.decoder_embed_dim, config.decoder_vocab_size, bias=False
        )

        if config.share_decoder_input_output_embed:
            self.lm_head.weight = self.model.decoder.embed_tokens.weight

        self.post_init()

    def tie_weights(self):
        pass

    def get_encoder(self):
        return self.model.get_encoder()

    def get_decoder(self):
        return self.model.get_decoder()

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_label_smoothing(self, label_smoothing):
        self._label_smoothing = label_smoothing

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        decoder_head_mask: Optional[torch.Tensor] = None,
        cross_attn_head_mask: Optional[torch.Tensor] = None,
        encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.Tensor], Seq2SeqLMOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Returns:
        """
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        if labels is not None:
            if decoder_input_ids is None:
                decoder_input_ids = shift_tokens_right(
                    labels, self.config.pad_token_id, self.config.decoder_start_token_id
                )

        outputs = self.model(
            input_ids,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            encoder_outputs=encoder_outputs,
            decoder_attention_mask=decoder_attention_mask,
            head_mask=head_mask,
            decoder_head_mask=decoder_head_mask,
            cross_attn_head_mask=cross_attn_head_mask,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            decoder_inputs_embeds=decoder_inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        lm_logits = self.lm_head(outputs[0])

        masked_lm_loss = None
        if labels is not None:
            labels = labels.to(lm_logits.device)
            masked_lm_loss = F.cross_entropy(
                input=lm_logits.view(-1, self.config.decoder_vocab_size),
                target=labels.view(-1),
                ignore_index=-100,
                label_smoothing=self._label_smoothing,
            )

        if not return_dict:
            output = (lm_logits,) + outputs[1:]
            return (
                ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
            )

        return Seq2SeqLMOutput(
            loss=masked_lm_loss,
            logits=lm_logits,
            past_key_values=outputs.past_key_values,
            decoder_hidden_states=outputs.decoder_hidden_states,
            decoder_attentions=outputs.decoder_attentions,
            cross_attentions=outputs.cross_attentions,
            encoder_last_hidden_state=outputs.encoder_last_hidden_state,
            encoder_hidden_states=outputs.encoder_hidden_states,
            encoder_attentions=outputs.encoder_attentions,
        )

    def prepare_inputs_for_generation(
        self,
        decoder_input_ids,
        past_key_values=None,
        attention_mask=None,
        head_mask=None,
        decoder_head_mask=None,
        cross_attn_head_mask=None,
        use_cache=None,
        encoder_outputs=None,
        **kwargs,
    ):
        if past_key_values is not None:
            decoder_input_ids = decoder_input_ids[:, -1:]

        return {
            "input_ids": None,
            "encoder_outputs": encoder_outputs,
            "past_key_values": past_key_values,
            "decoder_input_ids": decoder_input_ids,
            "attention_mask": attention_mask,
            "head_mask": head_mask,
            "decoder_head_mask": decoder_head_mask,
            "cross_attn_head_mask": cross_attn_head_mask,
            "use_cache": use_cache,
        }

    @staticmethod
    def _reorder_cache(past_key_values, beam_idx):
        reordered_past = ()
        for layer_past in past_key_values:
            reordered_past += (
                tuple(
                    past_state.index_select(0, beam_idx) for past_state in layer_past
                ),
            )
        return reordered_past