File size: 13,918 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Tests for utils."""

from functools import partial
import os

from absl.testing import parameterized
from big_vision import utils
import chex
import flax
import jax
from jax.experimental.array_serialization import serialization as array_serial
import jax.numpy as jnp
import numpy as np
import tensorflow as tf

from tensorflow.io import gfile


NDEV = 4


def setUpModule():
  chex.set_n_cpu_devices(NDEV)


class PadShardUnpadTest(chex.TestCase, tf.test.TestCase):
  BATCH_SIZES = [NDEV, NDEV + 1, NDEV - 1, 5 * NDEV, 5 * NDEV + 1, 5 * NDEV - 1]
  DTYPES = [np.float32, np.uint8, jax.numpy.bfloat16, np.int32]

  def tearDown(self):
    chex.clear_trace_counter()
    super().tearDown()

  @parameterized.product(dtype=DTYPES, bs=BATCH_SIZES)
  def test_basics(self, dtype, bs):
    # Just tests that basic calling works without exploring caveats.
    @partial(utils.pad_shard_unpad, static_argnums=())
    def add(a, b):
      return a + b

    x = np.arange(bs, dtype=dtype)
    y = add(x, 10*x)
    chex.assert_type(y.dtype, x.dtype)
    np.testing.assert_allclose(np.float64(y), np.float64(x + 10*x))

  @parameterized.parameters(DTYPES)
  def test_min_device_batch_avoids_recompile(self, dtype):
    @partial(utils.pad_shard_unpad, static_argnums=())
    @jax.jit
    @chex.assert_max_traces(n=1)
    def add(a, b):
      return a + b

    chex.clear_trace_counter()

    for bs in self.BATCH_SIZES:
      x = np.arange(bs, dtype=dtype)
      y = add(x, 10*x, min_device_batch=9)  # pylint: disable=unexpected-keyword-arg
      chex.assert_type(y.dtype, x.dtype)
      np.testing.assert_allclose(np.float64(y), np.float64(x + 10*x))

  @parameterized.product(dtype=DTYPES, bs=BATCH_SIZES)
  def test_static_argnum(self, dtype, bs):
    @partial(utils.pad_shard_unpad, static_argnums=(1,))
    def add(a, b):
      return a + b

    x = np.arange(bs, dtype=dtype)
    y = add(x, 10)
    chex.assert_type(y.dtype, x.dtype)
    np.testing.assert_allclose(np.float64(y), np.float64(x + 10))

  @parameterized.product(dtype=DTYPES, bs=BATCH_SIZES)
  def test_static_argnames(self, dtype, bs):
    # In this test, leave static_argnums at the default value too, in order to
    # test the default/most canonical path where `params` are the first arg.
    @partial(utils.pad_shard_unpad, static_argnames=('b',))
    def add(params, a, *, b):
      return params * a + b

    x = np.arange(bs, dtype=dtype)
    y = add(5, x, b=10)
    chex.assert_type(y.dtype, x.dtype)
    np.testing.assert_allclose(np.float64(y), np.float64(5 * x + 10))


class TreeTest(tf.test.TestCase):

  def setUp(self):
    super().setUp()

    self.d1 = {'w1': 1, 'w2': 2, 'w34': (3, 4)}
    self.d1_flat = [1, 2]
    self.d1_flat_jax = jax.tree.flatten(self.d1)[0]
    self.d1_named_flat = [('w1', 1), ('w2', 2), ('w34/0', 3), ('w34/1', 4)]
    self.d1_named_flat_jax = [('w1', 1), ('w2', 2), ('w34/0', 3), ('w34/1', 4)]

    self.d2 = {'conv1': {'kernel': 0, 'bias': 1},
               'conv2': {'kernel': 2, 'bias': 3}}
    self.d2_flat = [1, 0, 3, 2]
    self.d2_flat_jax = jax.tree.flatten(self.d2)[0]
    self.d2_named_flat = [('conv1/bias', 1), ('conv1/kernel', 0),
                          ('conv2/bias', 3), ('conv2/kernel', 2)]
    self.d2_named_flat_jax = [('conv1/bias', 1), ('conv1/kernel', 0),
                              ('conv2/bias', 3), ('conv2/kernel', 2)]
    self.d2_named_flat_inner = [
        ('conv1/bias', 1), ('conv1/kernel', 0), ('conv1', self.d2['conv1']),
        ('conv2/bias', 3), ('conv2/kernel', 2), ('conv2', self.d2['conv2']),
        ('', self.d2),
    ]

    # This is a very important testcase that checks whether we correctly
    # recover jax' traversal order, even though our custom traversal may not
    # be consistent with jax' traversal order. In particular, jax traverses
    # FlaxStruct in the order of attribute definition, while our custom
    # traversal is alphabetical.
    @flax.struct.dataclass
    class FlaxStruct():
      v3: float
      v2: int
      v1: str
    self.d3 = {'a': 0, 'flax': FlaxStruct(2.0, 1, 's')}
    self.d3_flat = [0, 1, 2.0, 's']
    self.d3_flat_jax = jax.tree.flatten(self.d3)[0]
    self.d3_named_flat = [
        ('a', 0), ('flax/v1', 's'), ('flax/v2', 1), ('flax/v3', 2.0)]
    self.d3_named_flat_jax = [
        ('a', 0), ('flax/v3', 2.0), ('flax/v2', 1), ('flax/v1', 's')]

  def test_traverse_with_names(self):
    names_and_vals = list(utils._traverse_with_names(self.d1))
    self.assertEqual(names_and_vals, self.d1_named_flat)

    names_and_vals = list(utils._traverse_with_names(self.d2))
    self.assertEqual(names_and_vals, self.d2_named_flat)

    names_and_vals = list(utils._traverse_with_names(
        self.d2, with_inner_nodes=True))
    self.assertEqual(names_and_vals, self.d2_named_flat_inner)

    names_and_vals = list(utils._traverse_with_names(self.d3))
    self.assertEqual(names_and_vals, self.d3_named_flat)

  def test_tree_flatten_with_names(self):
    names_and_vals = utils.tree_flatten_with_names(self.d1)[0]
    self.assertEqual(names_and_vals, self.d1_named_flat_jax)
    self.assertEqual([x for _, x in names_and_vals], self.d1_flat_jax)

    names_and_vals = utils.tree_flatten_with_names(self.d2)[0]
    self.assertEqual(names_and_vals, self.d2_named_flat_jax)
    self.assertEqual([x for _, x in names_and_vals], self.d2_flat_jax)

    names_and_vals = utils.tree_flatten_with_names(self.d3)[0]
    self.assertEqual(names_and_vals, self.d3_named_flat_jax)
    self.assertEqual([x for _, x in names_and_vals], self.d3_flat_jax)

  def test_tree_map_with_names(self):
    d1 = utils.tree_map_with_names(
        lambda name, x: -x if 'w2' in name else x, self.d1)
    self.assertEqual(d1, {'w1': 1, 'w2': -2, 'w34': (3, 4)})

    d1 = utils.tree_map_with_names(
        lambda name, x1, x2: x1 + x2 if 'w2' in name else x1, self.d1, self.d1)
    self.assertEqual(d1, {'w1': 1, 'w2': 4, 'w34': (3, 4)})

  def test_recover_tree(self):
    keys = ['a/b', 'a/c/x', 'a/c/y', 'd']
    values = [0, 1, 2, 3]
    self.assertEqual(utils.recover_tree(keys, values),
                     {'a': {'b': 0, 'c': {'x': 1, 'y': 2}}, 'd': 3})

  def test_make_mask_trees(self):
    F, T = False, True  # pylint: disable=invalid-name
    tree = {'a': {'b': 0, 'x': 1}, 'b': {'x': 2, 'y': 3}}
    msk1 = {'a': {'b': F, 'x': T}, 'b': {'x': T, 'y': F}}
    msk2 = {'a': {'b': F, 'x': F}, 'b': {'x': F, 'y': T}}
    # Note that 'b' matches '^b' only and not '.*/b'.
    # Also note that "b/x" is matched by rule 1 only (because it comes first).
    self.assertEqual(
        utils.make_mask_trees(tree, ('.*/x', 'b/.*')), [msk1, msk2])

  def test_tree_get(self):
    tree = {'a': {'b': 0, 'x': 1}, 'b': {'x': 2, 'y': 3}}
    self.assertEqual(utils.tree_get(tree, 'a/b'), 0)
    self.assertEqual(utils.tree_get(tree, 'a/x'), 1)
    self.assertEqual(utils.tree_get(tree, 'b/x'), 2)
    self.assertEqual(utils.tree_get(tree, 'b/y'), 3)
    self.assertEqual(utils.tree_get(tree, 'a'), tree['a'])
    self.assertEqual(utils.tree_get(tree, 'b'), tree['b'])

  def test_tree_replace(self):
    tree = {'a': {'b': 2, 'c': 3}, 'c': 4}
    replacements = {
        'a/b': 'a/b/x',  # replaces 'a/b' with 'a/b/x'
        '.*c': 'C',      # replaces 'c' with 'C' ('a/c' is removed)
        'C': 'D',        # replaces 'C' (which was 'c') with 'D'
        '.*/c': None,    # removes 'a/c'
    }
    tree2 = utils.tree_replace(tree, replacements)
    self.assertEqual(tree2, {'D': 4, 'a': {'b': {'x': 2}}})

  def test_tree_compare(self):
    tree1_only, tree2_only, dtype_shape_mismatch = utils.tree_compare(
        {'a': {'b': jnp.array(2), 'c': jnp.array(3)}},
        {'a': {'B': jnp.array(2), 'c': jnp.array(3.)}},
    )
    self.assertEqual(tree1_only, {'a/b'})
    self.assertEqual(tree2_only, {'a/B'})
    self.assertEqual(
        dtype_shape_mismatch,
        {'a/c': [(jnp.dtype('int32'), ()), (jnp.dtype('float32'), ())]})


class StepConversionTest(parameterized.TestCase, tf.test.TestCase):

  @parameterized.named_parameters(
      ('nice_steps', 1000, None, None, dict(foo_steps=3), 3),
      ('nice_epochs', 1000, 100, None, dict(foo_epochs=3), 30),
      ('nice_examples', None, 100, None, dict(foo_examples=300), 3),
      ('nice_percent', None, None, 10, dict(foo_percent=0.30), 3),
      ('offbyone_steps', 1001, None, None, dict(foo_steps=3), 3),
      ('offbyone_epochs', 1001, 100, None, dict(foo_epochs=3), 30),
      ('offbyone_examples', None, 101, None, dict(foo_examples=300), 3),
      ('offbyone_percent', None, None, 11, dict(foo_percent=0.30), 3),
  )
  def test_steps(self, data_size, batch_size, total, cfg, expected):
    # Correct default usage:
    step = utils.steps('foo', cfg, data_size=data_size, batch_size=batch_size,
                       total_steps=total)
    self.assertEqual(step, expected)

    # Inexitent entry:
    with self.assertRaises(ValueError):
      step = utils.steps('bar', cfg, data_size=data_size, batch_size=batch_size,
                         total_steps=total)
    step = utils.steps('bar', cfg, data_size=data_size, batch_size=batch_size,
                       total_steps=total, default=1234)
    self.assertEqual(step, 1234)


class CreateLearningRateScheduleTest(parameterized.TestCase, tf.test.TestCase):

  @parameterized.named_parameters(
      ('linear', 'linear', {}, 13, .5),
      ('polynomial', 'polynomial', {'end': .1, 'power': 2}, 13, .325),
      ('cosine', 'cosine', {}, 13, .5),
      ('rsqrt', 'rsqrt', {'timescale': 1}, 13, 0.3333333),
      ('stair_5', 'stair', {'steps': [10], 'mults': [.5]}, 5, 1.),
      ('stair_10', 'stair', {'steps': [10], 'mults': [.5]}, 10, .5),
      ('warmup_before', 'rsqrt', {'timescale': 1}, 3, .6),
      ('cooldown_after', 'rsqrt', {'timescale': 1}, 20, .05),
  )
  def test_schedule(self, decay_type, extra_kwargs, step, expected_lr):
    lr_fn = utils.create_learning_rate_schedule(
        total_steps=21,
        batch_size=512,
        base=.5,
        decay_type=decay_type,
        scale_with_batchsize=True,
        warmup_steps=5,
        cooldown_steps=5,
        **extra_kwargs)
    lr = lr_fn(step)
    self.assertAlmostEqual(lr, expected_lr)


class CheckpointTest(tf.test.TestCase):

  def setup(self):
    gacm = array_serial.GlobalAsyncCheckpointManager()

    save_path = os.path.join(self.create_tempdir('workdir'), 'checkpoint.bv')
    x = utils.put_cpu(np.array([1, 2, 3, 4]))
    y = utils.put_cpu(np.array([5, 6, 7, 8]))
    ckpt = {'x': x, 'y': {'z': y}}

    sharding = jax.sharding.SingleDeviceSharding(
        jax.local_devices(backend='cpu')[0]
    )
    shardings = jax.tree.map(lambda _: sharding, ckpt)

    return gacm, save_path, ckpt, shardings

  def test_save_and_load(self):
    gacm, save_path, ckpt, shardings = self.setup()
    step = 100
    utils.save_checkpoint_ts(gacm, ckpt, save_path, step, keep=True)
    gacm.wait_until_finished()
    ckpt_loaded = utils.load_checkpoint_ts(save_path,
                                           tree=ckpt, shardings=shardings)
    chex.assert_trees_all_equal(ckpt_loaded, ckpt)

    save_path_step = f'{save_path}-{step:09d}'
    ckpt_loaded_step = utils.tsload(save_path_step, shardings=shardings)
    chex.assert_trees_all_equal(ckpt_loaded_step, ckpt)

  def test_save_and_partial_load(self):
    gacm, save_path, ckpt, shardings = self.setup()
    utils.save_checkpoint_ts(gacm, ckpt, save_path, step=100)
    gacm.wait_until_finished()
    _ = shardings.pop('x'), ckpt.pop('x')
    ckpt_loaded = utils.load_checkpoint_ts(save_path,
                                           tree=ckpt, shardings=shardings)
    chex.assert_trees_all_equal(ckpt_loaded, ckpt)

  def test_save_and_cpu_load(self):
    gacm, save_path, ckpt, _ = self.setup()
    utils.save_checkpoint_ts(gacm, ckpt, save_path, step=100)
    gacm.wait_until_finished()
    ckpt_loaded = utils.load_checkpoint_ts(save_path)
    chex.assert_trees_all_equal(ckpt_loaded, ckpt)

  def test_save_and_partial_cpu_load(self):
    gacm, save_path, ckpt, _ = self.setup()
    utils.save_checkpoint_ts(gacm, ckpt, save_path, step=100)
    gacm.wait_until_finished()
    ckpt.pop('y')
    ckpt_loaded = utils.load_checkpoint_ts(save_path, regex='x.*')
    chex.assert_trees_all_equal(ckpt_loaded, ckpt)

  def test_keep_deletes(self):
    def x(tree, factor):  # x as in "times" for multiplying.
      return jax.tree.map(lambda a: a * factor, tree)

    gacm, save_path, ckpt, _ = self.setup()
    utils.save_checkpoint_ts(gacm, ckpt, save_path, step=100, keep=False)
    utils.save_checkpoint_ts(gacm, x(ckpt, 2), save_path, step=200, keep=True)
    utils.save_checkpoint_ts(gacm, x(ckpt, 3), save_path, step=300, keep=False)
    gacm.wait_until_finished()
    ckpt_loaded_200 = utils.tsload(f'{save_path}-{200:09d}')
    chex.assert_trees_all_equal(ckpt_loaded_200, x(ckpt, 2))
    ckpt_loaded_300 = utils.tsload(f'{save_path}-{300:09d}-tmp')
    chex.assert_trees_all_equal(ckpt_loaded_300, x(ckpt, 3))
    ckpt_loaded_last = utils.load_checkpoint_ts(save_path)
    chex.assert_trees_all_equal(ckpt_loaded_last, x(ckpt, 3))
    with self.assertRaises(Exception):  # Can different types depending on fs.
      _ = utils.tsload(f'{save_path}-{100:09d}')
    # Test that ckpt@100 was deleted
    self.assertFalse(gfile.exists(f'{save_path}-{100:09d}-tmp'))


if __name__ == '__main__':
  tf.test.main()