File size: 6,289 Bytes
74e8f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=line-too-long
r"""Distilling BiT-R152x2 into BiT-R50x1 on ILSVRC-2012 as in https://arxiv.org/abs/2106.05237
Note that as per paper title, good results require many epochs and thus
a lot of _patience_. For experimentation/exploration, consider
using the smaller datasets.
300ep take about 15h on a v3-32 TPU, an example log is available at:
Example logs at gs://big_vision/distill/bit_i1k_300ep_06-16/big_vision_metrics.txt
big_vision.trainers.proj.distill.distill \
--config big_vision/configs/proj/distill/bit_i1k.py \
--workdir gs://[your_bucket]/big_vision/`date '+%m-%d_%H%M'` \
--config.total_epochs 1200
"""
import big_vision.configs.common as bvcc
from big_vision.configs.common_fewshot import get_fewshot_lsr
import big_vision.configs.proj.distill.common as cd
import ml_collections as mlc
def get_config(arg=None):
"""Config for distilling on ImageNet."""
arg = bvcc.parse_arg(arg, runlocal=False)
config = mlc.ConfigDict()
config.input = {}
config.input.data = dict(name='imagenet2012', split='train[:98%]')
config.input.batch_size = 4096
config.input.shuffle_buffer_size = 250_000
config.num_classes = 1000
config.total_epochs = 1200 # A good middle-ground
config.log_training_steps = 50
config.ckpt_steps = 1000
config.keep_ckpt_steps = 20000
# Model section
config.student_name = 'bit_paper'
config.student = dict(depth=50, width=1)
config.teachers = ['prof_m'] # You could even add multiple.
# TODO: use public checkpoint name.
config.prof_m_name = 'bit_paper'
config.prof_m_init = cd.inits['BiT-M R152x2 imagenet2012 ic224']
config.prof_m = dict(depth=152, width=2)
pp_common = (
'|value_range(-1, 1)'
'|onehot(1000, key="{lbl}", key_result="labels")'
'|keep("image", "labels")'
)
config.input.pp = (
'decode_jpeg_and_inception_crop(224)|flip_lr' +
pp_common.format(lbl='label')
)
ppv = 'decode|resize_small(256)|central_crop(224)' + pp_common
config.mixup = dict(p=1.0)
# Distillation settings
config.distance = 'kl'
config.distance_kw = dict(t=1.0)
# Optimizer section
config.grad_clip_norm = 1.0
config.optax_name = 'scale_by_adam'
config.optax = dict(mu_dtype='bfloat16')
config.lr = 0.03
config.wd = 0.0003
config.schedule = dict(warmup_steps=5000, decay_type='cosine')
# Eval section
minitrain_split = 'train[:2%]' if not arg.runlocal else 'train[:16]'
minival_split = 'train[99%:]' if not arg.runlocal else 'train[:16]'
val_split = 'validation' if not arg.runlocal else 'validation[:16]'
real_split = 'validation' if not arg.runlocal else 'validation[:16]'
v2_split = 'test' if not arg.runlocal else 'test[:16]'
def get_eval(split, dataset='imagenet2012'):
return dict(
type='classification',
pred='student_fwd',
data=dict(name=dataset, split=split),
pp_fn=ppv.format(lbl='label'),
loss_name='softmax_xent',
log_steps=1000,
)
config.evals = {}
config.evals.student_train = get_eval(minitrain_split)
config.evals.student_minival = get_eval(minival_split)
config.evals.student_val = get_eval(val_split)
config.evals.student_v2 = get_eval(v2_split, dataset='imagenet_v2')
config.evals.student_real = get_eval(real_split, dataset='imagenet2012_real')
config.evals.student_real.pp_fn = ppv.format(lbl='real_label')
config.evals.student_fewshot = get_fewshot_lsr(runlocal=arg.runlocal)
config.evals.student_fewshot.pred = 'student_fwd'
config.evals.student_fewshot.log_steps = 10_000
teacher_eval = dict(
log_steps=100_000, # Teacher is fixed, so rare evals.
pred='prof_m_fwd',
)
config.evals.teacher_train = {**config.evals.student_train, **teacher_eval}
config.evals.teacher_minival = {**config.evals.student_minival, **teacher_eval}
config.evals.teacher_val = {**config.evals.student_val, **teacher_eval}
config.evals.teacher_v2 = {**config.evals.student_v2, **teacher_eval}
config.evals.teacher_real = {**config.evals.student_real, **teacher_eval}
config.evals.teacher_fewshot = {**config.evals.student_fewshot, **teacher_eval}
config.evals.teacher_fewshot.prefix = 'z_teacher/'
# Could in principle also look at agreement on other datasets!
def get_dist(split, dataset='imagenet2012'):
return dict(
type='proj.distill.distance',
pred='student_prof_m_fwd',
data=dict(name=dataset, split=split),
pp_fn=ppv.format(lbl='label') + '|keep("image")',
log_steps=1000,
distances=({'kind': 'kl'}, {'kind': 'euclidean'},
{'kind': 'agree', 'k': 1}, {'kind': 'agree', 'k': 5}),
)
config.evals.dist_train = get_dist(minitrain_split)
config.evals.dist_minival = get_dist(minival_split)
config.evals.dist_val = get_dist(val_split)
config.evals.dist_v2 = get_dist(v2_split, dataset='imagenet_v2')
# NOTE: CKA evaluator does not work with batch padding, so the size of the
# split must be a multiple of the batch size.
def get_cka(split):
return dict(
type='proj.distill.cka',
pred='student_prof_m_fwd',
data=dict(name='imagenet2012', split=split),
pp_fn=ppv.format(lbl='label') + '|keep("image")',
log_steps=1000,
)
config.evals.cka_train = get_cka('train[:24576]' if not arg.runlocal else 'train[:16]')
config.evals.cka_minival = get_cka('train[-24576:]' if not arg.runlocal else 'train[:16]')
config.evals.cka_val = get_cka('validation[:49152]' if not arg.runlocal else 'validation[:16]')
# Make a few things much smaller for quick local debugging testruns.
if arg.runlocal:
config.input.shuffle_buffer_size = 10
config.input.batch_size = 8
return config |