File size: 6,489 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# pylint: disable=line-too-long
r"""Distillation of ViT models into FlexiViT on ImageNet1k.

Run training of the -S variant for 90ep:

big_vision.trainers.proj.flexi.distill \
  --config big_vision/configs/proj/flexivit/i1k_deit3_distill.py \
  --workdir gs://[your_bucket]/big_vision/`date '+%m-%d_%H%M'` \
  --config.total_epochs 90 --config.variant S

Logdir for one reproduction run:
  - gs://big_vision/flexivit/deit3_i1k_s_90ep_12-15_2254

Timing on Cloud:
  - S on v3-32: Walltime:10h16m (4h39m eval)

Note that we did not optimize the input for Cloud,
with tuned caching and prefetching, we should be able to get:
  - S on v3-32: Walltime: ~6h30m (~1h30m eval)
  - B on v3-32: Walltime: ~16h00m (~2h30m eval)
"""

import big_vision.configs.common as bvcc


def get_config(arg=None):
  """Config for distilling ViT on ImageNet1k."""
  c = bvcc.parse_arg(arg, runlocal=False, res=240)

  c.seed = 0
  c.total_epochs = 90
  c.num_classes = 1000
  c.loss = 'softmax_xent'

  c.input = {}
  c.input.data = dict(
      name='imagenet2012',
      split='train[:99%]',
  )
  c.input.batch_size = 1024 if not c.runlocal else 8
  c.input.cache_raw = False  # Needs up to 120GB of RAM!
  c.input.shuffle_buffer_size = 250_000 if not c.runlocal else 10

  c.log_training_steps = 50
  c.ckpt_steps = 1000

  # Model section
  c.variant = 'B'
  init = bvcc.format_str('deit3_{variant}_384_1k', c)
  c.student_name = 'proj.flexi.vit'
  c.student_init = init
  c.student = dict(variant=c.get_ref('variant'), pool_type='tok', patch_size=(16, 16))

  c.teachers = ['prof']  # You could even add multiple.
  c.prof_name = 'vit'
  c.prof_init = init
  c.prof = dict(variant=c.get_ref('variant'), pool_type='tok', patch_size=(16, 16))

  pp_label = '|onehot(1000, key="{lbl}", key_result="labels")|keep("image", "prof", "labels")'
  c.input.pp = (
      f'decode|inception_crop|flip_lr'
      '|copy("image", "prof")'
      f'|resize({c.res})|value_range'
      '|resize(384, key="prof")|value_range(key="prof")'
      + pp_label.format(lbl='label')
  )
  pp_eval_both = (
      'decode|copy("image", "prof")|'
      f'|resize({c.res//7*8})|central_crop({c.res})|value_range'
      f'|resize({384//7*8}, key="prof")|central_crop(384, key="prof")|value_range(key="prof")|'
  )
  pp_eval_student = (
      f'decode|resize({c.res//7*8})|central_crop({c.res})|value_range(-1, 1)'
  )
  pp_eval_prof = (
      f'decode|resize({384//7*8})|central_crop(384)|value_range(outkey="prof")'
  )

  c.mixup = dict(p=1.0, n=2)

  # Distillation settings
  c.distance = 'kl'
  c.distance_kw = dict(t=1.0)

  # Optimizer section
  c.grad_clip_norm = 1.0
  c.optax_name = 'scale_by_adam'
  c.optax = dict(mu_dtype='bfloat16')

  c.lr = 1e-4
  c.wd = 1e-5
  c.schedule = dict(warmup_steps=5000, decay_type='cosine')

  # Define the model parameters which are flexible:
  c.flexi = dict()
  c.flexi.seqhw = dict(
      # The settings to sample from. Corresponding patch-sizes at 240px:
      # 48, 40, 30, 24, 20, 16, 15, 12, 10, 8
      v=(5, 6, 8, 10, 12, 15, 16, 20, 24, 30),
      # The probabilities/weights of them. Default uniform.
      p=(1, 1, 1, 1, 1, 1, 1, 1, 1, 1),
  )

  # Eval section
  def mksplit(split):
    if c.runlocal:
      return split.split('[')[0] + '[:16]'
    return split

  minitrain_split = mksplit('train[:2%]')
  minival_split = mksplit('train[99%:]')
  val_split = mksplit('validation')
  test_split = mksplit('test')
  c.aggressive_cache = False

  def get_eval(s, split, dataset='imagenet2012'):
    return dict(
        type='classification',
        pred=f'student_seqhw={s}',
        data=dict(name=dataset, split=split),
        pp_fn=pp_eval_student + pp_label.format(lbl='label'),
        loss_name='sigmoid_xent',
        log_percent=0.05,
        cache_final=False,
    )

  c.evals = {}
  for s in c.flexi.seqhw.v:
    c.evals[f'student_minitrain_{s:02d}'] = get_eval(s, minitrain_split)
    c.evals[f'student_minival_{s:02d}'] = get_eval(s, minival_split)
    c.evals[f'student_val_{s:02d}'] = get_eval(s, val_split)
    c.evals[f'student_v2_{s:02d}'] = get_eval(s, test_split, 'imagenet_v2')
    c.evals[f'student_a_{s:02d}'] = get_eval(s, test_split, 'imagenet_a')
    c.evals[f'student_r_{s:02d}'] = get_eval(s, test_split, 'imagenet_r')
    c.evals[f'student_real_{s:02d}'] = get_eval(s, val_split, 'imagenet2012_real')
    c.evals[f'student_real_{s:02d}'].pp_fn = pp_eval_student + pp_label.format(lbl='real_label')

  def get_eval_t(split, dataset='imagenet2012'):
    return dict(
        type='classification',
        pred='prof',
        data=dict(name=dataset, split=split),
        pp_fn=pp_eval_prof + pp_label.format(lbl='label'),
        loss_name='sigmoid_xent',
        log_percent=0.5,  # Teacher is fixed, so eval just for plots.
        cache_final=False,
    )
  c.evals.teacher_minitrain = get_eval_t(minitrain_split)
  c.evals.teacher_minival = get_eval_t(minival_split)
  c.evals.teacher_val = get_eval_t(val_split)
  c.evals.teacher_v2 = get_eval_t(test_split, 'imagenet_v2')
  c.evals.teacher_a = get_eval_t(test_split, 'imagenet_a')
  c.evals.teacher_r = get_eval_t(test_split, 'imagenet_r')
  c.evals.teacher_real = get_eval_t(val_split, 'imagenet2012_real')
  c.evals.teacher_real.pp_fn = pp_eval_prof + pp_label.format(lbl='real_label')

  # Distance evaluators
  def get_dist(split, s):
    return dict(
        type='proj.distill.distance',
        pred=f'student_seqhw={s}_prof',
        data=dict(name='imagenet2012', split=split),
        pp_fn=pp_eval_both + '|keep("image", "prof")',
        log_percent=0.05,
        distances=({'kind': 'kl'}, {'kind': 'logsoftmax_euclidean'},
                   {'kind': 'agree', 'k': 1}, {'kind': 'agree', 'k': 5}),
        cache_final=False,
    )
  for s in c.flexi.seqhw.v:
    c.evals[f'dist_minitrain_{s:02d}'] = get_dist(minitrain_split, s)
    c.evals[f'dist_val_{s:02d}'] = get_dist(val_split, s)

  return c