File size: 6,489 Bytes
74e8f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=line-too-long
r"""Distillation of ViT models into FlexiViT on ImageNet1k.
Run training of the -S variant for 90ep:
big_vision.trainers.proj.flexi.distill \
--config big_vision/configs/proj/flexivit/i1k_deit3_distill.py \
--workdir gs://[your_bucket]/big_vision/`date '+%m-%d_%H%M'` \
--config.total_epochs 90 --config.variant S
Logdir for one reproduction run:
- gs://big_vision/flexivit/deit3_i1k_s_90ep_12-15_2254
Timing on Cloud:
- S on v3-32: Walltime:10h16m (4h39m eval)
Note that we did not optimize the input for Cloud,
with tuned caching and prefetching, we should be able to get:
- S on v3-32: Walltime: ~6h30m (~1h30m eval)
- B on v3-32: Walltime: ~16h00m (~2h30m eval)
"""
import big_vision.configs.common as bvcc
def get_config(arg=None):
"""Config for distilling ViT on ImageNet1k."""
c = bvcc.parse_arg(arg, runlocal=False, res=240)
c.seed = 0
c.total_epochs = 90
c.num_classes = 1000
c.loss = 'softmax_xent'
c.input = {}
c.input.data = dict(
name='imagenet2012',
split='train[:99%]',
)
c.input.batch_size = 1024 if not c.runlocal else 8
c.input.cache_raw = False # Needs up to 120GB of RAM!
c.input.shuffle_buffer_size = 250_000 if not c.runlocal else 10
c.log_training_steps = 50
c.ckpt_steps = 1000
# Model section
c.variant = 'B'
init = bvcc.format_str('deit3_{variant}_384_1k', c)
c.student_name = 'proj.flexi.vit'
c.student_init = init
c.student = dict(variant=c.get_ref('variant'), pool_type='tok', patch_size=(16, 16))
c.teachers = ['prof'] # You could even add multiple.
c.prof_name = 'vit'
c.prof_init = init
c.prof = dict(variant=c.get_ref('variant'), pool_type='tok', patch_size=(16, 16))
pp_label = '|onehot(1000, key="{lbl}", key_result="labels")|keep("image", "prof", "labels")'
c.input.pp = (
f'decode|inception_crop|flip_lr'
'|copy("image", "prof")'
f'|resize({c.res})|value_range'
'|resize(384, key="prof")|value_range(key="prof")'
+ pp_label.format(lbl='label')
)
pp_eval_both = (
'decode|copy("image", "prof")|'
f'|resize({c.res//7*8})|central_crop({c.res})|value_range'
f'|resize({384//7*8}, key="prof")|central_crop(384, key="prof")|value_range(key="prof")|'
)
pp_eval_student = (
f'decode|resize({c.res//7*8})|central_crop({c.res})|value_range(-1, 1)'
)
pp_eval_prof = (
f'decode|resize({384//7*8})|central_crop(384)|value_range(outkey="prof")'
)
c.mixup = dict(p=1.0, n=2)
# Distillation settings
c.distance = 'kl'
c.distance_kw = dict(t=1.0)
# Optimizer section
c.grad_clip_norm = 1.0
c.optax_name = 'scale_by_adam'
c.optax = dict(mu_dtype='bfloat16')
c.lr = 1e-4
c.wd = 1e-5
c.schedule = dict(warmup_steps=5000, decay_type='cosine')
# Define the model parameters which are flexible:
c.flexi = dict()
c.flexi.seqhw = dict(
# The settings to sample from. Corresponding patch-sizes at 240px:
# 48, 40, 30, 24, 20, 16, 15, 12, 10, 8
v=(5, 6, 8, 10, 12, 15, 16, 20, 24, 30),
# The probabilities/weights of them. Default uniform.
p=(1, 1, 1, 1, 1, 1, 1, 1, 1, 1),
)
# Eval section
def mksplit(split):
if c.runlocal:
return split.split('[')[0] + '[:16]'
return split
minitrain_split = mksplit('train[:2%]')
minival_split = mksplit('train[99%:]')
val_split = mksplit('validation')
test_split = mksplit('test')
c.aggressive_cache = False
def get_eval(s, split, dataset='imagenet2012'):
return dict(
type='classification',
pred=f'student_seqhw={s}',
data=dict(name=dataset, split=split),
pp_fn=pp_eval_student + pp_label.format(lbl='label'),
loss_name='sigmoid_xent',
log_percent=0.05,
cache_final=False,
)
c.evals = {}
for s in c.flexi.seqhw.v:
c.evals[f'student_minitrain_{s:02d}'] = get_eval(s, minitrain_split)
c.evals[f'student_minival_{s:02d}'] = get_eval(s, minival_split)
c.evals[f'student_val_{s:02d}'] = get_eval(s, val_split)
c.evals[f'student_v2_{s:02d}'] = get_eval(s, test_split, 'imagenet_v2')
c.evals[f'student_a_{s:02d}'] = get_eval(s, test_split, 'imagenet_a')
c.evals[f'student_r_{s:02d}'] = get_eval(s, test_split, 'imagenet_r')
c.evals[f'student_real_{s:02d}'] = get_eval(s, val_split, 'imagenet2012_real')
c.evals[f'student_real_{s:02d}'].pp_fn = pp_eval_student + pp_label.format(lbl='real_label')
def get_eval_t(split, dataset='imagenet2012'):
return dict(
type='classification',
pred='prof',
data=dict(name=dataset, split=split),
pp_fn=pp_eval_prof + pp_label.format(lbl='label'),
loss_name='sigmoid_xent',
log_percent=0.5, # Teacher is fixed, so eval just for plots.
cache_final=False,
)
c.evals.teacher_minitrain = get_eval_t(minitrain_split)
c.evals.teacher_minival = get_eval_t(minival_split)
c.evals.teacher_val = get_eval_t(val_split)
c.evals.teacher_v2 = get_eval_t(test_split, 'imagenet_v2')
c.evals.teacher_a = get_eval_t(test_split, 'imagenet_a')
c.evals.teacher_r = get_eval_t(test_split, 'imagenet_r')
c.evals.teacher_real = get_eval_t(val_split, 'imagenet2012_real')
c.evals.teacher_real.pp_fn = pp_eval_prof + pp_label.format(lbl='real_label')
# Distance evaluators
def get_dist(split, s):
return dict(
type='proj.distill.distance',
pred=f'student_seqhw={s}_prof',
data=dict(name='imagenet2012', split=split),
pp_fn=pp_eval_both + '|keep("image", "prof")',
log_percent=0.05,
distances=({'kind': 'kl'}, {'kind': 'logsoftmax_euclidean'},
{'kind': 'agree', 'k': 1}, {'kind': 'agree', 'k': 5}),
cache_final=False,
)
for s in c.flexi.seqhw.v:
c.evals[f'dist_minitrain_{s:02d}'] = get_dist(minitrain_split, s)
c.evals[f'dist_val_{s:02d}'] = get_dist(val_split, s)
return c |