File size: 7,759 Bytes
74e8f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=line-too-long
r"""Distill flexible-seqlen ViT on ImageNet-21k from (internal link) B/8.
This config is for reference, we never ran it on public infrastructure.
big_vision.trainers.proj.flexi.distill \
--config big_vision/configs/proj/flexivit/i21k_distill.py \
--workdir gs://[your_bucket]/big_vision/`date '+%m-%d_%H%M'` \
--config.total_epochs 90
"""
import big_vision.configs.common as bvcc
def get_config(arg=None):
"""Config for training."""
# 240px is nice because it's divisible by
# [240, 120, 80, 60, 48, 40, 30, 24, 20, 16, 15, 12, 10, 8, 6, 5, 4, 3, 2, 1]
c = bvcc.parse_arg(arg, runlocal=False, res=240)
c.seed = 0
c.total_epochs = 90
c.num_classes = 21843
c.init_head_bias = -10.0
c.loss = 'sigmoid_xent'
c.input = dict()
c.input.data = dict(
name='imagenet21k',
split='full[51200:]',
)
c.input.batch_size = 4096 if not c.runlocal else 8
c.input.shuffle_buffer_size = 250_000 if not c.runlocal else 25
pp_label_i21k = f'|onehot({c.num_classes})|keep("image", "prof", "labels")'
pp_label_i1k = '|onehot(1000, key="{lbl}", key_result="labels")|keep("image", "prof", "labels")'
c.input.pp = (
f'decode|inception_crop|flip_lr|copy("image", "prof")'
f'|resize({c.res})|value_range(-1, 1)'
f'|resize(224, outkey="prof")|value_range(-1, 1, key="prof")'
+ pp_label_i21k
)
pp_eval_both = (
'decode|copy("image", "prof")|'
f'|resize_small({c.res//7*8})|central_crop({c.res})|value_range(-1, 1)'
f'|resize_small(256, key="prof")|central_crop(224, key="prof")|value_range(-1, 1, key="prof")|'
)
pp_eval_student = (
f'decode|resize({c.res//7*8})|central_crop({c.res})|value_range(-1, 1)'
)
pp_eval_prof = (
'decode|resize(256)|central_crop(224)|value_range(-1, 1, outkey="prof")'
)
# Aggressive pre-fetching because our models here are small, so we not only
# can afford it, but we also need it for the smallest models to not be
# bottle-necked by the input pipeline. Play around with it for -L models tho.
c.input.prefetch = 8
c.prefetch_to_device = 4
c.log_training_steps = 50
c.ckpt_steps = 1000
# Model section
init = 'howto-i21k-B/8'
c.student_name = 'proj.flexi.vit'
c.student_init = init
c.student = dict(variant='B', pool_type='tok', patch_size=(8, 8))
c.teachers = ['prof'] # You could even add multiple.
c.prof_name = 'vit'
c.prof_init = init
c.prof = dict(variant='B/8', pool_type='tok')
# Define the model parameters which are flexible:
c.flexi = dict()
c.flexi.seqhw = dict(
# The settings to sample from. Corresponding patch-sizes at 240px:
# 48, 40, 30, 24, 20, 16, 15, 12, 10, 8
v=(5, 6, 8, 10, 12, 15, 16, 20, 24, 30),
# The probabilities/weights of them. Default uniform.
p=(1, 1, 1, 1, 1, 1, 1, 1, 1, 1),
)
# Distillation settings
c.distance = 'kl'
c.distance_kw = dict(t=1.0)
# Optimizer section
c.optax_name = 'scale_by_adam'
c.optax = dict(mu_dtype='bfloat16')
c.grad_clip_norm = 1.0
c.lr = 1e-4
c.wd = 1e-5
c.schedule = dict(warmup_steps=5000, decay_type='cosine')
c.mixup = dict(p=1.0)
####
# Preparing for evals
c.evals = {}
def mksplit(split):
if c.runlocal:
return split.split('[')[0] + '[:16]'
return split
####
# Student evals
# Evaluations on i21k itself.
def eval_i21k(s, split):
return dict(
type='classification',
pred=f'student_seqhw={s}',
data={**c.input.data, 'split': mksplit(split)},
pp_fn=pp_eval_student + pp_label_i21k,
loss_name=c.loss,
log_steps=5000, # Very fast O(seconds) so it's fine to run it often.
)
for s in c.flexi.seqhw.v:
c.evals[f'student_test{s:02d}'] = eval_i21k(s, 'full[:25_600]')
c.evals[f'student_val{s:02d}'] = eval_i21k(s, 'full[25_600:51_200]')
c.evals[f'student_minitrain{s:02d}'] = eval_i21k(s, 'full[51_200:76_800]')
# Evaluations on ImageNet1k variants by label-mapping.
def eval_i1k(s, dataset, split, lblmap):
return dict(
type='classification_with_labelmap',
pred=f'student_seqhw={s}',
data=dict(name=dataset, split=mksplit(split)),
pp_fn=pp_eval_student + pp_label_i1k.format(lbl='label'),
loss_name=c.loss,
log_steps=5000, # Very fast O(seconds) so it's fine to run it often.
label_mapping=lblmap,
)
for s in c.flexi.seqhw.v:
c.evals[f'student_i1k_val{s:02d}'] = eval_i1k(s, 'imagenet2012', 'validation', 'i1k_i21k')
c.evals[f'student_i1k_v2{s:02d}'] = eval_i1k(s, 'imagenet_v2', 'test', 'i1k_i21k')
c.evals[f'student_i1k_a{s:02d}'] = eval_i1k(s, 'imagenet_a', 'test', 'i1ka_i21k')
c.evals[f'student_i1k_r{s:02d}'] = eval_i1k(s, 'imagenet_r', 'test', 'i1kr_i21k')
c.evals[f'student_i1k_real{s:02d}'] = eval_i1k(s, 'imagenet2012_real', 'validation', 'i1k_i21k')
c.evals[f'student_i1k_real{s:02d}'].pp_fn = pp_eval_student + pp_label_i1k.format(lbl='real_label')
# TODO: add objectnet.
####
# Teacher evals
# Evaluations on i21k itself.
def eval_i21k_t(split):
return dict(
type='classification',
pred='prof',
data={**c.input.data, 'split': mksplit(split)},
pp_fn=pp_eval_prof + pp_label_i21k,
loss_name=c.loss,
log_steps=5000, # Very fast O(seconds) so it's fine to run it often.
)
c.evals.teacher_test = eval_i21k_t('full[:25_600]')
c.evals.teacher_val = eval_i21k_t('full[25_600:51_200]')
c.evals.teacher_minitrain = eval_i21k_t('full[51_200:76_800]')
# Evaluations on ImageNet1k variants by label-mapping.
def eval_i1k_t(dataset, split, lblmap):
return dict(
type='classification_with_labelmap',
pred='prof',
data=dict(name=dataset, split=mksplit(split)),
pp_fn=pp_eval_prof + pp_label_i1k.format(lbl='label'),
loss_name=c.loss,
log_percent=0.5, # Teacher is fixed, so eval just for plots.
label_mapping=lblmap,
)
c.evals.teacher_i1k_val = eval_i1k_t('imagenet2012', 'validation', 'i1k_i21k')
c.evals.teacher_i1k_v2 = eval_i1k_t('imagenet_v2', 'test', 'i1k_i21k')
c.evals.teacher_i1k_a = eval_i1k_t('imagenet_a', 'test', 'i1ka_i21k')
c.evals.teacher_i1k_r = eval_i1k_t('imagenet_r', 'test', 'i1kr_i21k')
c.evals.teacher_i1k_real = eval_i1k_t('imagenet2012_real', 'validation', 'i1k_i21k')
c.evals.teacher_i1k_real.pp_fn = pp_eval_prof + pp_label_i1k.format(lbl='real_label')
# TODO: add objectnet.
####
# Combined evals
def get_dist(split, s):
return dict(
type='proj.distill.distance',
pred=f'student_seqhw={s}_prof',
data=dict(name='imagenet2012', split=mksplit(split)),
pp_fn=pp_eval_both + '|keep("image", "prof")',
log_percent=0.05,
distances=({'kind': 'kl'}, {'kind': 'logsoftmax_euclidean'},
{'kind': 'agree', 'k': 1}, {'kind': 'agree', 'k': 5}),
)
for s in c.flexi.seqhw.v:
c.evals[f'dist_minitrain_{s:02d}'] = get_dist('full[51_200:76_800]', s)
c.evals[f'dist_val_{s:02d}'] = get_dist('full[25_600:51_200]', s)
# Few-shot evaluators not added for overkill reasons for now.
return c
|