File size: 5,108 Bytes
74e8f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=line-too-long
r"""Pre-training flexible-seqlen ViT on ImageNet-21k following (internal link).
This config is for reference, we never ran it on public infrastructure.
big_vision.trainers.proj.flexi.train \
--config big_vision/configs/proj/flexivit/i21k_sup.py \
--workdir gs://[your_bucket]/big_vision/`date '+%m-%d_%H%M'` \
--config.total_epochs 90
"""
import big_vision.configs.common as bvcc
def get_config(arg=None):
"""Config for training."""
# 240px is nice because it's divisible by
# [240, 120, 80, 60, 48, 40, 30, 24, 20, 16, 15, 12, 10, 8, 6, 5, 4, 3, 2, 1]
c = bvcc.parse_arg(arg, runlocal=False, res=240)
c.seed = 0
c.total_epochs = 90
c.num_classes = 21843
c.init_head_bias = -10.0
c.loss = 'sigmoid_xent'
c.input = dict()
c.input.data = dict(
name='imagenet21k',
split='full[51200:]',
)
c.input.batch_size = 4096 if not c.runlocal else 8
c.input.shuffle_buffer_size = 250_000 if not c.runlocal else 25
pp_common = '|value_range(-1, 1)|onehot({onehot_args})|keep("image", "labels")'
pp_common_i21k = pp_common.format(onehot_args=f'{c.num_classes}')
pp_common_i1k = pp_common.format(onehot_args='1000, key="{lbl}", key_result="labels"')
c.input.pp = f'decode_jpeg_and_inception_crop({c.res})|flip_lr|randaug(2,10)' + pp_common_i21k
def pp_eval(res=c.res):
return f'decode|resize_small({res//7*8})|central_crop({res})'
# To continue using the near-defunct randaug op.
c.pp_modules = ['ops_general', 'ops_image', 'ops_text', 'archive.randaug']
# Aggressive pre-fetching because our models here are small, so we not only
# can afford it, but we also need it for the smallest models to not be
# bottle-necked by the input pipeline. Play around with it for -L models tho.
c.input.prefetch = 8
c.prefetch_to_device = 4
c.log_training_steps = 50
c.ckpt_steps = 1000
# Model section
c.model_name = 'proj.flexi.vit'
c.model = dict(
variant='B',
pool_type='tok',
posemb='learn',
# patch_size=(32, 32),
patch_size=(8, 8),
posemb_size=(7, 7),
seqhw=None, # Dynamic!
)
# Define the model parameters which are flexible:
c.flexi = dict()
c.flexi.seqhw = dict(
# The settings to sample from. Corresponding patch-sizes at 240px:
# 48, 40, 30, 24, 20, 16, 15, 12, 10, 8
v=(5, 6, 8, 10, 12, 15, 16, 20, 24, 30),
# The probabilities/weights of them. Default uniform.
p=(1, 1, 1, 1, 1, 1, 1, 1, 1, 1),
)
# Optimizer section
c.optax_name = 'scale_by_adam'
c.optax = dict(mu_dtype='bfloat16')
c.grad_clip_norm = 1.0
c.lr = 0.001
c.wd = 0.0001
c.schedule = dict(warmup_steps=10_000, decay_type='cosine')
c.mixup = dict(p=0.2, fold_in=None)
def mksplit(split):
if c.runlocal:
return split.split('[')[0] + '[:16]'
return split
# Evaluations on i21k itself.
def eval_i21k(s, split):
return dict(
type='classification',
pred=f'predict_seqhw={s}',
data={**c.input.data, 'split': mksplit(split)},
pp_fn=pp_eval() + pp_common_i21k,
loss_name=c.loss,
log_steps=5000, # Very fast O(seconds) so it's fine to run it often.
)
c.evals = {}
for s in c.flexi.seqhw.v:
c.evals[f'test{s:02d}'] = eval_i21k(s, 'full[:25_600]')
c.evals[f'val{s:02d}'] = eval_i21k(s, 'full[25_600:51_200]')
c.evals[f'train{s:02d}'] = eval_i21k(s, 'full[51_200:76_800]')
# Evaluations on ImageNet1k variants by label-mapping.
def eval_i1k(s, dataset, split, lblmap):
return dict(
type='classification_with_labelmap',
pred=f'predict_seqhw={s}',
data=dict(name=dataset, split=mksplit(split)),
pp_fn=pp_eval() + pp_common_i1k.format(lbl='label'),
loss_name=c.loss,
log_steps=5000, # Very fast O(seconds) so it's fine to run it often.
label_mapping=lblmap,
)
for s in c.flexi.seqhw.v:
c.evals[f'i1k_val{s:02d}'] = eval_i1k(s, 'imagenet2012', 'validation', 'i1k_i21k')
c.evals[f'i1k_v2{s:02d}'] = eval_i1k(s, 'imagenet_v2', 'test', 'i1k_i21k')
c.evals[f'i1k_a{s:02d}'] = eval_i1k(s, 'imagenet_a', 'test', 'i1ka_i21k')
c.evals[f'i1k_r{s:02d}'] = eval_i1k(s, 'imagenet_r', 'test', 'i1kr_i21k')
c.evals[f'i1k_real{s:02d}'] = eval_i1k(s, 'imagenet2012_real', 'validation', 'i1k_i21k')
c.evals[f'i1k_real{s:02d}'].pp_fn = pp_eval() + pp_common_i1k.format(lbl='real_label')
# TODO: add objectnet.
# Few-shot evaluators not added for overkill reasons for now.
return c
|