File size: 5,108 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# pylint: disable=line-too-long
r"""Pre-training flexible-seqlen ViT on ImageNet-21k following (internal link).

This config is for reference, we never ran it on public infrastructure.

big_vision.trainers.proj.flexi.train \
  --config big_vision/configs/proj/flexivit/i21k_sup.py \
  --workdir gs://[your_bucket]/big_vision/`date '+%m-%d_%H%M'` \
  --config.total_epochs 90
"""

import big_vision.configs.common as bvcc


def get_config(arg=None):
  """Config for training."""
  # 240px is nice because it's divisible by
  # [240, 120, 80, 60, 48, 40, 30, 24, 20, 16, 15, 12, 10, 8, 6, 5, 4, 3, 2, 1]
  c = bvcc.parse_arg(arg, runlocal=False, res=240)

  c.seed = 0
  c.total_epochs = 90
  c.num_classes = 21843
  c.init_head_bias = -10.0
  c.loss = 'sigmoid_xent'

  c.input = dict()
  c.input.data = dict(
      name='imagenet21k',
      split='full[51200:]',
  )
  c.input.batch_size = 4096 if not c.runlocal else 8
  c.input.shuffle_buffer_size = 250_000 if not c.runlocal else 25

  pp_common = '|value_range(-1, 1)|onehot({onehot_args})|keep("image", "labels")'
  pp_common_i21k = pp_common.format(onehot_args=f'{c.num_classes}')
  pp_common_i1k = pp_common.format(onehot_args='1000, key="{lbl}", key_result="labels"')
  c.input.pp = f'decode_jpeg_and_inception_crop({c.res})|flip_lr|randaug(2,10)' + pp_common_i21k
  def pp_eval(res=c.res):
    return f'decode|resize_small({res//7*8})|central_crop({res})'

  # To continue using the near-defunct randaug op.
  c.pp_modules = ['ops_general', 'ops_image', 'ops_text', 'archive.randaug']

  # Aggressive pre-fetching because our models here are small, so we not only
  # can afford it, but we also need it for the smallest models to not be
  # bottle-necked by the input pipeline. Play around with it for -L models tho.
  c.input.prefetch = 8
  c.prefetch_to_device = 4

  c.log_training_steps = 50
  c.ckpt_steps = 1000

  # Model section
  c.model_name = 'proj.flexi.vit'
  c.model = dict(
      variant='B',
      pool_type='tok',
      posemb='learn',
      # patch_size=(32, 32),
      patch_size=(8, 8),
      posemb_size=(7, 7),
      seqhw=None,  # Dynamic!
  )

  # Define the model parameters which are flexible:
  c.flexi = dict()
  c.flexi.seqhw = dict(
      # The settings to sample from. Corresponding patch-sizes at 240px:
      # 48, 40, 30, 24, 20, 16, 15, 12, 10, 8
      v=(5, 6, 8, 10, 12, 15, 16, 20, 24, 30),
      # The probabilities/weights of them. Default uniform.
      p=(1, 1, 1, 1, 1, 1, 1, 1, 1, 1),
  )

  # Optimizer section
  c.optax_name = 'scale_by_adam'
  c.optax = dict(mu_dtype='bfloat16')
  c.grad_clip_norm = 1.0

  c.lr = 0.001
  c.wd = 0.0001
  c.schedule = dict(warmup_steps=10_000, decay_type='cosine')

  c.mixup = dict(p=0.2, fold_in=None)

  def mksplit(split):
    if c.runlocal:
      return split.split('[')[0] + '[:16]'
    return split

  # Evaluations on i21k itself.
  def eval_i21k(s, split):
    return dict(
        type='classification',
        pred=f'predict_seqhw={s}',
        data={**c.input.data, 'split': mksplit(split)},
        pp_fn=pp_eval() + pp_common_i21k,
        loss_name=c.loss,
        log_steps=5000,  # Very fast O(seconds) so it's fine to run it often.
    )

  c.evals = {}
  for s in c.flexi.seqhw.v:
    c.evals[f'test{s:02d}'] = eval_i21k(s, 'full[:25_600]')
    c.evals[f'val{s:02d}'] = eval_i21k(s, 'full[25_600:51_200]')
    c.evals[f'train{s:02d}'] = eval_i21k(s, 'full[51_200:76_800]')

  # Evaluations on ImageNet1k variants by label-mapping.
  def eval_i1k(s, dataset, split, lblmap):
    return dict(
        type='classification_with_labelmap',
        pred=f'predict_seqhw={s}',
        data=dict(name=dataset, split=mksplit(split)),
        pp_fn=pp_eval() + pp_common_i1k.format(lbl='label'),
        loss_name=c.loss,
        log_steps=5000,  # Very fast O(seconds) so it's fine to run it often.
        label_mapping=lblmap,
    )
  for s in c.flexi.seqhw.v:
    c.evals[f'i1k_val{s:02d}'] = eval_i1k(s, 'imagenet2012', 'validation', 'i1k_i21k')
    c.evals[f'i1k_v2{s:02d}'] = eval_i1k(s, 'imagenet_v2', 'test', 'i1k_i21k')
    c.evals[f'i1k_a{s:02d}'] = eval_i1k(s, 'imagenet_a', 'test', 'i1ka_i21k')
    c.evals[f'i1k_r{s:02d}'] = eval_i1k(s, 'imagenet_r', 'test', 'i1kr_i21k')
    c.evals[f'i1k_real{s:02d}'] = eval_i1k(s, 'imagenet2012_real', 'validation', 'i1k_i21k')
    c.evals[f'i1k_real{s:02d}'].pp_fn = pp_eval() + pp_common_i1k.format(lbl='real_label')
    # TODO: add objectnet.

  # Few-shot evaluators not added for overkill reasons for now.
  return c