File size: 6,669 Bytes
74e8f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=line-too-long
r"""Train a GIVT encoder-decoder model for NYU depth prediction."""
import itertools
import big_vision.configs.common as bvcc
import ml_collections
ConfigDict = ml_collections.ConfigDict
VTT_MODELS = {
'base': dict(num_layers=12, num_decoder_layers=12, num_heads=12, mlp_dim=3072, emb_dim=768),
'large': dict(num_layers=24, num_decoder_layers=24, num_heads=16, mlp_dim=4096, emb_dim=1024),
}
RES = 512
PATCH_SIZE = 16
LABEL_RES = 512
LABEL_PATCH_SIZE = 16
QUANTIZATION_BINS = 256
MIN_DEPTH = 0.001
MAX_DEPTH = 10.0
def get_config(arg='split=sweep'):
"""Config for training."""
arg = bvcc.parse_arg(arg, split='sweep', runlocal=False, singlehost=False)
config = ConfigDict()
config.input = {}
config.input.pp = (
f'decode|nyu_depth|'
f'randu("fliplr")|det_fliplr(key="image")|det_fliplr(key="labels")|'
f'inception_box|crop_box(key="image")|crop_box(key="labels")|'
f'resize({RES})|'
f'resize({LABEL_RES},key="labels",method="nearest")|'
f'bin_nyu_depth(min_depth={MIN_DEPTH}, max_depth={MAX_DEPTH}, num_bins={QUANTIZATION_BINS})|'
f'value_range(-1,1)|'
f'copy("image", "cond_image")|copy("labels", "image")|'
f'keep("image", "cond_image")'
)
pp_eval = (
f'decode|nyu_depth|'
f'nyu_eval_crop|'
f'resize({RES})|'
f'resize({LABEL_RES},key="labels",method="nearest")|'
f'bin_nyu_depth(min_depth={MIN_DEPTH}, max_depth={MAX_DEPTH}, num_bins={QUANTIZATION_BINS})|'
f'value_range(-1,1)|'
f'copy("image", "cond_image")|copy("labels", "image")|'
f'keep("image", "cond_image")'
)
pp_predict = (
f'decode|nyu_depth|'
f'nyu_eval_crop|copy("labels","ground_truth")|'
f'resize({RES})|'
f'value_range(-1,1)|'
f'copy("image", "cond_image")|'
f'strong_hash(inkey="tfds_id", outkey="image/id")|'
f'keep("cond_image", "ground_truth", "image/id")'
)
config.input.data = dict(name='nyu_depth_v2', split='train')
config.input.batch_size = 512
config.input.shuffle_buffer_size = 50_000
config.total_epochs = 50
config.log_training_steps = 50
config.ckpt_steps = 1000
config.keep_ckpt_steps = None
config.prefetch_to_device = 2
config.seed = 0
# Optimizer section
config.optax_name = 'big_vision.scale_by_adafactor'
config.optax = dict(beta2_cap=0.95)
config.ar_generation_config = ConfigDict()
config.ar_generation_config.temp = 0.9
config.ar_generation_config.temp_probs = 1.0
config.ar_generation_config.beam_size = 2
config.ar_generation_config.fan_size = 8
config.ar_generation_config.rand_top_k = False
config.ar_generation_config.rand_top_k_temp = 1.0
config.lr = 0.001
config.wd = 0.000001
config.lr_mults = [
('pos_embedding_encoder.*', 0.1),
('EmbedPatches.*', 0.1),
('encoder.*', 0.1),
('decoder.*', 1.0)
]
config.schedule = dict(decay_type='cosine', warmup_percent=0.1)
# Oracle section
config.min_depth = MIN_DEPTH
config.max_depth = MAX_DEPTH
config.vae = ConfigDict()
config.vae.model_name = 'proj.givt.vit'
config.vae.model = ConfigDict()
config.vae.model.input_size = (RES, RES)
config.vae.model.patch_size = (PATCH_SIZE, PATCH_SIZE)
config.vae.model.code_len = 256
config.vae.model.width = 768
config.vae.model.enc_depth = 6
config.vae.model.dec_depth = 12
config.vae.model.mlp_dim = 3072
config.vae.model.num_heads = 12
config.vae.model.codeword_dim = 16
config.vae.model.code_dropout = 'none'
config.vae.model.bottleneck_resize = True
# values: (channel index in source image, number of classes)
config.vae.model.inout_specs = {
'depth': (0, QUANTIZATION_BINS),
}
config.vae.model_init = 'gs://big_vision/givt/vae_nyu_depth_params.npz'
# Model section
config.model_name = 'proj.givt.givt'
# # Base model (for exploration)
# config.model_init = {'encoder': 'howto-i21k-B/16'}
# config.model = ConfigDict(VTT_MODELS['base'])
# Large model
config.model_init = {'encoder': 'howto-i21k-L/16'}
config.model_load = dict(dont_load=('cls', 'head/bias', 'head/kernel'))
config.model = ConfigDict(VTT_MODELS['large'])
config.model.patches = (PATCH_SIZE, PATCH_SIZE)
config.model.input_size = (RES, RES)
config.model.posemb_type = 'learn'
config.model.seq_len = config.vae.model.code_len
config.model.num_labels = None
config.model.num_mixtures = 1
config.model.fix_square_plus = True
config.model.out_dim = config.vae.model.codeword_dim
config.model.scale_tol = 1e-6
config.model.dec_dropout_rate = 0.0
# Evaluation section
config.evals = {}
config.evals.val = ConfigDict()
config.evals.val.type = 'mean'
config.evals.val.pred = 'validation'
config.evals.val.data = {**config.input.data}
config.evals.val.data.split = 'validation'
config.evals.val.pp_fn = pp_eval
config.evals.val.log_steps = 250
base = {
'type': 'proj.givt.nyu_depth',
'data': {**config.input.data},
'pp_fn': pp_predict,
'pred': 'sample_depth',
'log_steps': 2000,
'min_depth': MIN_DEPTH,
'max_depth': MAX_DEPTH,
}
config.evals.nyu_depth_val = dict(base)
config.evals.nyu_depth_val.data.split = 'validation'
config.evals.save_pred = dict(base)
config.evals.save_pred.type = 'proj.givt.save_predictions'
del config.evals.save_pred.min_depth, config.evals.save_pred.max_depth
config.evals.save_pred.log_steps = 100_000
config.evals.save_pred.data.split = 'validation[:128]'
config.evals.save_pred.outfile = 'inference.npz'
config.eval_only = False
config.seed = 0
if arg.runlocal:
config.input.batch_size = 4
config.input.shuffle_buffer_size = 10
config.evals.val.log_steps = 20
config.evals.val.data.split = 'validation[:4]'
config.evals.nyu_depth_val.data.split = 'validation[:4]'
config.evals.save_pred.data.split = 'validation[:4]'
config.model.update(VTT_MODELS['base'])
del config.model_init
for k in config.evals.keys():
if k not in ['val', 'nyu_depth_val', 'save_pred']:
del config.evals[k]
return config
|