File size: 4,707 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# pylint: disable=line-too-long
r"""Train VAE for GIVT-based UViM COCO panoptic task.
"""

import big_vision.configs.common as bvcc
import ml_collections as mlc


def get_config(arg='res=512,patch_size=16'):
  """Config for training label compression on COCO-panoptic."""
  arg = bvcc.parse_arg(arg, res=512, patch_size=16,
                       runlocal=False, singlehost=False)
  config = mlc.ConfigDict()

  config.input = {}
  config.input.data = dict(name='coco/2017_panoptic', split='train[4096:]')

  config.input.batch_size = 1024
  config.input.shuffle_buffer_size = 25_000

  config.total_epochs = 500

  config.input.pp = (
      f'decode|coco_panoptic|concat(["semantics","instances"], "labels")|'
      f'randu("fliplr")|det_fliplr(key="image")|det_fliplr(key="labels")|'
      f'inception_box|crop_box(key="image")|crop_box(key="labels")|'
      f'resize({arg.res})|resize({arg.res},key="labels",method="nearest")|'
      f'value_range(-1, 1)|make_canonical|copy("labels","image")|keep("image")'
  )
  pp_eval = (
      f'decode|coco_panoptic|concat(["semantics","instances"], "labels")|'
      f'resize({arg.res})|resize({arg.res},key="labels",method="nearest")|'
      f'value_range(-1, 1)|make_canonical|copy("labels","image")|keep("image", "image/id")'
  )

  config.log_training_steps = 50
  config.ckpt_steps = 1000
  config.keep_ckpt_steps = None

  # Model section
  config.model_name = 'proj.givt.vit'
  config.model = mlc.ConfigDict()
  config.model.input_size = (arg.res, arg.res)
  config.model.patch_size = (arg.patch_size, arg.patch_size)
  config.model.code_len = 256
  config.model.width = 768
  config.model.enc_depth = 6
  config.model.dec_depth = 12
  config.model.mlp_dim = 3072
  config.model.num_heads = 12
  config.model.codeword_dim = 32
  config.model.code_dropout = 'none'
  config.model.bottleneck_resize = True
  config.model.scan = True
  config.model.remat_policy = 'nothing_saveable'

  config.rec_loss_fn = 'xent'  # xent, l2
  # values: (index in source image, number of classes)
  config.model.inout_specs = {
      'semantics': (0, 133 + 1),  # +1 for void label
      'instances': (1, 100),  # COCO: actually 98 train/78 validation.
  }

  config.beta = 2.5e-4
  config.beta_percept = 0.0

  config.optax_name = 'scale_by_adam'
  config.optax = dict(b2=0.95)
  config.grad_clip_norm = 1.0

  # FSDP training by default
  config.sharding_strategy = [('.*', 'fsdp(axis="data")')]
  config.sharding_rules = [('act_batch', ('data',))]

  config.lr = 1e-3
  config.wd = 1e-4
  config.schedule = dict(decay_type='cosine', warmup_steps=0.1)
  config.grad_clip_norm = 1.0

  # Evaluation section
  config.evals = {}
  config.evals.val = mlc.ConfigDict()
  config.evals.val.type = 'mean'
  config.evals.val.pred = 'validation'
  config.evals.val.data = {**config.input.data}
  config.evals.val.data.split = 'train[:4096]'
  config.evals.val.pp_fn = pp_eval
  config.evals.val.log_steps = 250

  base = {
      'type': 'proj.givt.coco_panoptic',
      'pp_fn': pp_eval,
      'log_steps': 5_000,
      'pred': 'predict_panoptic',
      # Filters objects that occupy less than 0.03^2 fraction of all pixels.
      # 'pred_kw': {'min_fraction': 0.03 ** 2},
  }
  config.evals.coco_panoptic_train = dict(**base, data={'split': 'train[4096:8192]'})
  config.evals.coco_panoptic_holdout = dict(**base, data={'split': 'train[:4096]'})
  config.evals.coco_panoptic = dict(**base, data={'split': 'validation'})

  config.evals.save_pred = dict(type='proj.givt.save_predictions')
  config.evals.save_pred.pp_fn = pp_eval
  config.evals.save_pred.log_steps = 100_000
  config.evals.save_pred.pred = 'predict_panoptic'
  config.evals.save_pred.data = {**config.input.data}
  config.evals.save_pred.data.split = 'validation[:1024]'
  config.evals.save_pred.outfile = 'inference.npz'

  config.seed = 0

  if arg.singlehost:
    config.input.batch_size = 128
    config.num_epochs = 100
  elif arg.runlocal:
    config.input.batch_size = 16
    config.input.shuffle_buffer_size = 10
    config.log_training_steps = 5
    config.model.enc_depth = 1
    config.model.dec_depth = 1

  return config