File size: 5,229 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# pylint: disable=line-too-long
r"""Train VAE on NYU depth data for GIVT-based UViM.
"""

import big_vision.configs.common as bvcc
import ml_collections as mlc


QUANTIZATION_BINS = 256
MIN_DEPTH = 0.001
MAX_DEPTH = 10.0


def get_config(arg='res=512,patch_size=16'):
  """Config for training label compression on NYU depth."""
  arg = bvcc.parse_arg(arg, res=512, patch_size=16,
                       runlocal=False, singlehost=False)
  config = mlc.ConfigDict()

  config.input = {}
  config.input.data = dict(name='nyu_depth_v2', split='train')

  config.input.batch_size = 1024
  config.input.shuffle_buffer_size = 25_000

  config.total_epochs = 200

  config.input.pp = (
      f'decode|nyu_depth|'
      f'randu("fliplr")|det_fliplr(key="image")|det_fliplr(key="labels")|'
      f'inception_box|crop_box(key="image")|crop_box(key="labels")|'
      f'resize({arg.res})|resize({arg.res},key="labels",method="nearest")|'
      f'bin_nyu_depth(min_depth={MIN_DEPTH}, max_depth={MAX_DEPTH}, num_bins={QUANTIZATION_BINS})|'
      f'value_range(-1, 1)|copy("labels", "image")|keep("image")'
  )
  pp_eval = (
      f'decode|nyu_depth|nyu_eval_crop|'
      f'resize({arg.res})|resize({arg.res},key="labels",method="nearest")|'
      f'bin_nyu_depth(min_depth={MIN_DEPTH}, max_depth={MAX_DEPTH}, num_bins={QUANTIZATION_BINS})|'
      f'value_range(-1, 1)|copy("labels", "image")|keep("image")'
  )
  pp_pred = (
      f'decode|nyu_depth|nyu_eval_crop|copy("labels","ground_truth")|'
      f'resize({arg.res})|resize({arg.res},key="labels",method="nearest")|'
      f'bin_nyu_depth(min_depth={MIN_DEPTH}, max_depth={MAX_DEPTH}, num_bins={QUANTIZATION_BINS})|'
      f'value_range(-1, 1)|copy("labels", "image")|'
      f'keep("image", "ground_truth")'
  )

  config.log_training_steps = 50
  config.ckpt_steps = 1000
  config.keep_ckpt_steps = None

  # Model section
  config.min_depth = MIN_DEPTH
  config.max_depth = MAX_DEPTH
  config.model_name = 'proj.givt.vit'
  config.model = mlc.ConfigDict()
  config.model.input_size = (arg.res, arg.res)
  config.model.patch_size = (arg.patch_size, arg.patch_size)
  config.model.code_len = 256
  config.model.width = 768
  config.model.enc_depth = 6
  config.model.dec_depth = 12
  config.model.mlp_dim = 3072
  config.model.num_heads = 12
  config.model.codeword_dim = 16
  config.model.code_dropout = 'none'
  config.model.bottleneck_resize = True
  config.model.scan = True
  config.model.remat_policy = 'nothing_saveable'
  config.model_init = ''

  config.rec_loss_fn = 'xent'  # xent, l2
  config.mask_zero_target = True
  # values: (index in source image, number of classes)
  config.model.inout_specs = {
      'depth': (0, QUANTIZATION_BINS),
  }

  config.beta = 2e-4
  config.beta_percept = 0.0

  # Optimizer section
  config.optax_name = 'scale_by_adam'
  config.optax = dict(b2=0.95)

  # FSDP training by default
  config.sharding_strategy = [('.*', 'fsdp(axis="data")')]
  config.sharding_rules = [('act_batch', ('data',))]

  config.lr = 1e-3
  config.wd = 1e-4
  config.schedule = dict(decay_type='cosine', warmup_steps=0.1)
  config.grad_clip_norm = 1.0

  # Evaluation section
  config.evals = {}
  config.evals.val = mlc.ConfigDict()
  config.evals.val.type = 'mean'
  config.evals.val.pred = 'validation'
  config.evals.val.data = {**config.input.data}
  config.evals.val.data.split = 'validation'
  config.evals.val.pp_fn = pp_eval
  config.evals.val.log_steps = 250

  base = {
      'type': 'proj.givt.nyu_depth',
      'data': {**config.input.data},
      'pp_fn': pp_pred,
      'pred': 'predict_depth',
      'log_steps': 2000,
      'min_depth': MIN_DEPTH,
      'max_depth': MAX_DEPTH,
  }
  config.evals.nyu_depth_val = {**base}
  config.evals.nyu_depth_val.data.split = 'validation'

  # ### Uses a lot of memory
  # config.evals.save_pred = dict(type='proj.givt.save_predictions')
  # config.evals.save_pred.pp_fn = pp_eval
  # config.evals.save_pred.log_steps = 100_000
  # config.evals.save_pred.data = {**config.input.data}
  # config.evals.save_pred.data.split = 'validation[:64]'
  # config.evals.save_pred.batch_size = 64
  # config.evals.save_pred.outfile = 'inference.npz'

  config.eval_only = False
  config.seed = 0

  if arg.singlehost:
    config.input.batch_size = 128
    config.num_epochs = 50
  elif arg.runlocal:
    config.input.batch_size = 16
    config.input.shuffle_buffer_size = 10
    config.log_training_steps = 5
    config.model.enc_depth = 1
    config.model.dec_depth = 1
    config.evals.val.data.split = 'validation[:16]'
    config.evals.val.log_steps = 20
    config.evals.nyu_depth_val.data.split = 'validation[:16]'

  return config