File size: 7,666 Bytes
74e8f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=line-too-long
r"""PaliGemma transfer to COCO-35L captions.
"""
import big_vision.configs.common as bvcc
from big_vision.configs.proj.paligemma.transfers.common import combine_and_keep_train, combine_and_keep_eval, TOKENIZER
LANGUAGES = (
'ar', 'bn', 'cs', 'da', 'de', 'el', 'en', 'es', 'fa', 'fi', 'fil', 'fr',
'he', 'hi', 'hr', 'hu', 'id', 'it', 'ja', 'ko', 'mi', 'nl', 'no', 'pl',
'pt', 'ro', 'ru', 'sv', 'sw', 'te', 'th', 'tr', 'uk', 'vi', 'zh',
)
LANGUAGES_XM3600 = (
'ar', 'bn', 'cs', 'da', 'de', 'el', 'en', 'es', 'fa', 'fi', 'fil', 'fr',
'he', 'hi', 'hr', 'hu', 'id', 'it', 'ja', 'ko', 'mi', 'nl', 'no', 'pl',
'pt', 'quz', 'ro', 'ru', 'sv', 'sw', 'te', 'th', 'tr', 'uk', 'vi', 'zh'
)
# A subset for more frequent evals.
LANGUAGES_SUBSET = ('ar', 'bn', 'en', 'id', 'sw', 'tr', 'zh')
def training_data(res, lang=None, text_len=32, crop='rs'):
"""Creates training data config.
See (internal link)
You can add more arguments beside `res`, but give them good defaults.
Args:
res: The requested image resolution (eg 224)
lang: language code
text_len: sequence length
crop: one of {'ic', 'rc', 'rs'}
Returns:
The ConfigDict for the input section.
"""
c = bvcc.parse_arg('') # Just make a configdict without extra import.
c.data = dict(
name='coco35l',
split=f'train_{lang}' if lang else '+'.join((f'train_{l}' for l in LANGUAGES)),
)
if crop == 'ic':
crop = f'inception_crop({res}, area_min=50)'
elif crop == 'rc':
crop = f'resize_small({res*8//7})|random_crop({res})'
elif crop == 'rs':
crop = f'resize({res})'
else:
raise ValueError(f'Unknown crop: {crop}')
c.pp = '|'.join([
'flatten',
'decode', crop, 'value_range(-1, 1)',
'choice_no_replacement(inkey="captions", outkey="suffix")',
'strfmt("caption {language}", outkey="prefix")',
combine_and_keep_train(text_len),
])
return c
def _get_eval_pp(res, lang, text_len=32):
return '|'.join([
'flatten',
'decode', f'resize({res})', 'value_range(-1, 1)',
f'strfmt("caption {lang}", outkey="prefix")',
combine_and_keep_eval(text_len, keep=('image/id', 'captions')),
])
def add_eval(c, res, text_len=32, langs=None, **kw):
"""Captioning evaluator with cider/bleu-4/meteor/rouge/spice metrics."""
for lang in (langs or LANGUAGES):
# Frequent evals on a subset of representative languages, final eval on all.
freq = 0.25 if lang in LANGUAGES_SUBSET else 1.0
c.evals[f'coco35l/{lang}'] = dict(
type='proj.paligemma.transfers.coco_caption',
pred='decode', pred_kw={'max_decode_len': text_len},
log_percent=freq, skip_first=(freq == 1.0), tokenizer=TOKENIZER,
data=dict(
name='coco35l',
split=f'dev_{lang}',
),
cache='none',
pp_fn=_get_eval_pp(res, lang, text_len),
)
c.evals[f'coco35l/{lang}'].update(kw)
def add_eval_xm(c, res, text_len=32, langs=None, **kw):
"""Captioning evaluator with cider/bleu-4/meteor/rouge/spice metrics."""
for lang in (langs or LANGUAGES_XM3600):
# Frequent evals on a subset of representative languages, final eval on all.
freq = 0.25 if lang in LANGUAGES_SUBSET else 1.0
c.evals[f'xm3600/{lang}'] = dict(
type='proj.paligemma.transfers.coco_caption',
pred='decode', pred_kw={'max_decode_len': text_len},
log_percent=freq, skip_first=(freq == 1.0), tokenizer=TOKENIZER,
data=dict(
name='xm3600',
split=lang,
),
pp_fn=_get_eval_pp(res, lang, text_len)
)
c.evals[f'xm3600/{lang}'].update(kw)
def add_eval_pplx(c, res, text_len=32):
"""Perplexity evaluator to test runs before implementing the real deal."""
c_train = training_data(res, text_len=text_len) # Use mostly same settings as training.
for name, split in [
('minitrain', 'train_en[:2%]'),
('minival', 'dev_en[:5%]'),
('eval', 'dev_en'),
]:
c.evals[f'coco35l/{name}/pplx'] = dict(
type='proj.paligemma.perplexity', pred='logits',
key='text', shift_labels=True,
log_percent=0.05, # Eval ~20x per run; it's cheap.
data={**c_train.data, 'split': split},
pp_fn=c_train.pp,
)
def get_config(arg=None):
"""Config for training."""
c = bvcc.parse_arg(arg, mode='xm', crop='rs', res=224, eval_xm3600=True, beam_size=0)
c.input = {
lang: training_data(c.res, lang=lang, crop=c.crop)
for lang in LANGUAGES
}
c.input.data = {lang: 1 for lang in LANGUAGES}
for k in c.input.data:
c.input[k].shuffle_buffer_size = 10_000
c.total_examples = 566_435 # We need to go a looot longer here.
c.input.batch_size = 256
c.optax_name = 'scale_by_adam'
c.optax = dict(b2=0.999)
c.lr = 1e-4
c.wd = 0.0
c.grad_clip_norm = 1.0
c.label_smoothing = 0.0
c.schedule = dict(decay_type='cosine', warmup_percent=0.05)
# Add evaluators.
c.evals = {}
add_eval_pplx(c, c.res)
if c.beam_size:
decode_kw = {'pred': 'beam_decode', 'pred_kw': {'beam_size': c.beam_size}}
else:
decode_kw = {}
add_eval(c, c.res, batch_size=1024, **decode_kw)
if c.eval_xm3600:
add_eval_xm(c, c.res, batch_size=1024, **decode_kw)
# Model section.
c.model_name = 'proj.paligemma.paligemma'
c.model = {}
c.model.img = dict(variant='So400m/14', pool_type='none', scan=True)
c.model.llm = dict(vocab_size=256_000 + 1024 + 128, dropout=0.0)
c.model_init = f'pt_{c.res}'
# FSDP strategy.
c.mesh = [('data', -1)]
c.sharding_strategy = [('.*', 'fsdp(axis="data")')]
c.sharding_rules = [('act_batch', ('data',))]
# These probably do not need any change/tuning
c.log_training_steps = 50
c.ckpt_steps = 1_000
c.pp_modules = ['ops_general', 'ops_image', 'ops_text', 'proj.paligemma.ops']
# Update configs for quicker local runs and avoid swapping.
if c.mode in ('runlocal', 'mock'):
# c.input.shuffle_buffer_size = None
for ev in c.evals.values():
ev.data.split = ev.data.split.split('[')[0] + '[:16]'
if c.mode == 'runlocal':
c.log_training_steps = 1
c.input.batch_size = 2
c.seed = 0
return c
def sweep_hyper(add):
"""sweep over hyper-params."""
for lr in (1e-5, 3e-6, 1e-6):
for wd in (0.0, 0.1*lr):
for ep in (1, 3, 5, 10, 20):
# One language COCO is 566_435 examples (5 captions, 100k examples).
add(lr=lr, wd=wd, total_examples=ep * 566_435, **bvcc.arg(res=224))
def sweep_best(add, arg=None):
"""Train with best hyper-params."""
c = bvcc.parse_arg(arg, eval_xm3600=True)
ep = 566_435
add(lr=1e-5, wd=1e-6, total_examples=5 * ep, **bvcc.arg(res=224, **c))
add(lr=1e-5, wd=1e-6, total_examples=5 * ep, **bvcc.arg(res=448, **c))
sweep = sweep_best # Choose which sweep to run.
def metrics(arg=None): # pylint: disable=unused-argument
c = bvcc.parse_arg(arg, eval_xm3600=True)
m = [('epoch', f'coco35l/{lang}/cider') for lang in LANGUAGES]
if c.eval_xm3600:
for lang in LANGUAGES:
m.append(('epoch', f'xm3600/{lang}/cider'))
return m
|