File size: 7,666 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# pylint: disable=line-too-long
r"""PaliGemma transfer to COCO-35L captions.
"""

import big_vision.configs.common as bvcc
from big_vision.configs.proj.paligemma.transfers.common import combine_and_keep_train, combine_and_keep_eval, TOKENIZER

LANGUAGES = (
    'ar', 'bn', 'cs', 'da', 'de', 'el', 'en', 'es', 'fa', 'fi', 'fil', 'fr',
    'he', 'hi', 'hr', 'hu', 'id', 'it', 'ja', 'ko', 'mi', 'nl', 'no', 'pl',
    'pt', 'ro', 'ru', 'sv', 'sw', 'te', 'th', 'tr', 'uk', 'vi', 'zh',
)

LANGUAGES_XM3600 = (
    'ar', 'bn', 'cs', 'da', 'de', 'el', 'en', 'es', 'fa', 'fi', 'fil', 'fr',
    'he', 'hi', 'hr', 'hu', 'id', 'it', 'ja', 'ko', 'mi', 'nl', 'no', 'pl',
    'pt', 'quz', 'ro', 'ru', 'sv', 'sw', 'te', 'th', 'tr', 'uk', 'vi', 'zh'
)

# A subset for more frequent evals.
LANGUAGES_SUBSET = ('ar', 'bn', 'en', 'id', 'sw', 'tr', 'zh')


def training_data(res, lang=None, text_len=32, crop='rs'):
  """Creates training data config.

  See (internal link)
  You can add more arguments beside `res`, but give them good defaults.

  Args:
    res: The requested image resolution (eg 224)
    lang: language code
    text_len: sequence length
    crop: one of {'ic', 'rc', 'rs'}

  Returns:
    The ConfigDict for the input section.
  """
  c = bvcc.parse_arg('')  # Just make a configdict without extra import.
  c.data = dict(
      name='coco35l',
      split=f'train_{lang}' if lang else '+'.join((f'train_{l}' for l in LANGUAGES)),
  )

  if crop == 'ic':
    crop = f'inception_crop({res}, area_min=50)'
  elif crop == 'rc':
    crop = f'resize_small({res*8//7})|random_crop({res})'
  elif crop == 'rs':
    crop = f'resize({res})'
  else:
    raise ValueError(f'Unknown crop: {crop}')

  c.pp = '|'.join([
      'flatten',
      'decode', crop, 'value_range(-1, 1)',
      'choice_no_replacement(inkey="captions", outkey="suffix")',
      'strfmt("caption {language}", outkey="prefix")',
      combine_and_keep_train(text_len),
  ])
  return c


def _get_eval_pp(res, lang, text_len=32):
  return '|'.join([
      'flatten',
      'decode', f'resize({res})', 'value_range(-1, 1)',
      f'strfmt("caption {lang}", outkey="prefix")',
      combine_and_keep_eval(text_len, keep=('image/id', 'captions')),
  ])


def add_eval(c, res, text_len=32, langs=None, **kw):
  """Captioning evaluator with cider/bleu-4/meteor/rouge/spice metrics."""
  for lang in (langs or LANGUAGES):
    # Frequent evals on a subset of representative languages, final eval on all.
    freq = 0.25 if lang in LANGUAGES_SUBSET else 1.0

    c.evals[f'coco35l/{lang}'] = dict(
        type='proj.paligemma.transfers.coco_caption',
        pred='decode', pred_kw={'max_decode_len': text_len},
        log_percent=freq, skip_first=(freq == 1.0), tokenizer=TOKENIZER,
        data=dict(
            name='coco35l',
            split=f'dev_{lang}',
        ),
        cache='none',
        pp_fn=_get_eval_pp(res, lang, text_len),
    )
    c.evals[f'coco35l/{lang}'].update(kw)


def add_eval_xm(c, res, text_len=32, langs=None, **kw):
  """Captioning evaluator with cider/bleu-4/meteor/rouge/spice metrics."""
  for lang in (langs or LANGUAGES_XM3600):
    # Frequent evals on a subset of representative languages, final eval on all.
    freq = 0.25 if lang in LANGUAGES_SUBSET else 1.0

    c.evals[f'xm3600/{lang}'] = dict(
        type='proj.paligemma.transfers.coco_caption',
        pred='decode', pred_kw={'max_decode_len': text_len},
        log_percent=freq, skip_first=(freq == 1.0), tokenizer=TOKENIZER,
        data=dict(
            name='xm3600',
            split=lang,
        ),
        pp_fn=_get_eval_pp(res, lang, text_len)
    )
    c.evals[f'xm3600/{lang}'].update(kw)


def add_eval_pplx(c, res, text_len=32):
  """Perplexity evaluator to test runs before implementing the real deal."""
  c_train = training_data(res, text_len=text_len)  # Use mostly same settings as training.
  for name, split in [
      ('minitrain', 'train_en[:2%]'),
      ('minival', 'dev_en[:5%]'),
      ('eval', 'dev_en'),
  ]:
    c.evals[f'coco35l/{name}/pplx'] = dict(
        type='proj.paligemma.perplexity', pred='logits',
        key='text', shift_labels=True,
        log_percent=0.05,  # Eval ~20x per run; it's cheap.
        data={**c_train.data, 'split': split},
        pp_fn=c_train.pp,
    )


def get_config(arg=None):
  """Config for training."""
  c = bvcc.parse_arg(arg, mode='xm', crop='rs', res=224, eval_xm3600=True, beam_size=0)

  c.input = {
      lang: training_data(c.res, lang=lang, crop=c.crop)
      for lang in LANGUAGES
  }
  c.input.data = {lang: 1 for lang in LANGUAGES}
  for k in c.input.data:
    c.input[k].shuffle_buffer_size = 10_000

  c.total_examples = 566_435  # We need to go a looot longer here.
  c.input.batch_size = 256
  c.optax_name = 'scale_by_adam'
  c.optax = dict(b2=0.999)
  c.lr = 1e-4
  c.wd = 0.0
  c.grad_clip_norm = 1.0
  c.label_smoothing = 0.0
  c.schedule = dict(decay_type='cosine', warmup_percent=0.05)

  # Add evaluators.
  c.evals = {}
  add_eval_pplx(c, c.res)

  if c.beam_size:
    decode_kw = {'pred': 'beam_decode', 'pred_kw': {'beam_size': c.beam_size}}
  else:
    decode_kw = {}

  add_eval(c, c.res, batch_size=1024, **decode_kw)
  if c.eval_xm3600:
    add_eval_xm(c, c.res, batch_size=1024, **decode_kw)

  # Model section.
  c.model_name = 'proj.paligemma.paligemma'
  c.model = {}
  c.model.img = dict(variant='So400m/14', pool_type='none', scan=True)
  c.model.llm = dict(vocab_size=256_000 + 1024 + 128, dropout=0.0)
  c.model_init = f'pt_{c.res}'

  # FSDP strategy.
  c.mesh = [('data', -1)]
  c.sharding_strategy = [('.*', 'fsdp(axis="data")')]
  c.sharding_rules = [('act_batch', ('data',))]

  # These probably do not need any change/tuning
  c.log_training_steps = 50
  c.ckpt_steps = 1_000
  c.pp_modules = ['ops_general', 'ops_image', 'ops_text', 'proj.paligemma.ops']

  # Update configs for quicker local runs and avoid swapping.
  if c.mode in ('runlocal', 'mock'):
    # c.input.shuffle_buffer_size = None
    for ev in c.evals.values():
      ev.data.split = ev.data.split.split('[')[0] + '[:16]'

  if c.mode == 'runlocal':
    c.log_training_steps = 1
    c.input.batch_size = 2

  c.seed = 0
  return c


def sweep_hyper(add):
  """sweep over hyper-params."""
  for lr in (1e-5, 3e-6, 1e-6):
    for wd in (0.0, 0.1*lr):
      for ep in (1, 3, 5, 10, 20):
        # One language COCO is 566_435 examples (5 captions, 100k examples).
        add(lr=lr, wd=wd, total_examples=ep * 566_435, **bvcc.arg(res=224))


def sweep_best(add, arg=None):
  """Train with best hyper-params."""
  c = bvcc.parse_arg(arg, eval_xm3600=True)
  ep = 566_435
  add(lr=1e-5, wd=1e-6, total_examples=5 * ep, **bvcc.arg(res=224, **c))
  add(lr=1e-5, wd=1e-6, total_examples=5 * ep, **bvcc.arg(res=448, **c))


sweep = sweep_best  # Choose which sweep to run.


def metrics(arg=None):  # pylint: disable=unused-argument
  c = bvcc.parse_arg(arg, eval_xm3600=True)
  m = [('epoch', f'coco35l/{lang}/cider') for lang in LANGUAGES]
  if c.eval_xm3600:
    for lang in LANGUAGES:
      m.append(('epoch', f'xm3600/{lang}/cider'))
  return m