File size: 6,097 Bytes
74e8f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=line-too-long
r"""PaliGemma transfer to OCR-VQA, see (internal link) for details and notes.
"""
import big_vision.configs.common as bvcc
from big_vision.configs.proj.paligemma.transfers.common import combine_and_keep_train, combine_and_keep_eval, TOKENIZER
def training_data(res, *, final_split, text_len=32):
"""Creates training data config.
See (internal link)
You can add more arguments beside `res`, but give them good defaults.
Args:
res: The requested image resolution (eg 224).
final_split: Train on all train+val data or train+val[20000:].
text_len: sequence length.
Returns:
The ConfigDict for the input section.
"""
# Note that the dataset is "unbatched" here, meaning each image_question pair
# is one example. So while there are ~800k training examples, there's only
# ~200k unique images, each one having on average 4 questions, and the
# questions are highly regular:
# - What is the title of this book?
# - What type of book is this? OR What is the genre of this book?
# - Who wrote this book? OR Who is the author of this book?
# - Is this book related to [GENRE]? OR Is this a [GENRE] book? "yes"
# - Same but with answer "no"
# So one obvious thing we could do in training is randomize the negative genre
# question more using a custom pp op.
c = bvcc.parse_arg('') # Just make a configdict without extra import.
c.data = dict(
name='ocrvqa_id',
split='train+val' if final_split else 'train + val[20_000:]', # Val is 100k, we don't need that much!
)
c.pp = '|'.join([
f'decode|resize({res}, antialias=True)|value_range(-1, 1)',
'strfmt("answer en {question}", outkey="prefix")',
'copy(inkey="answer", outkey="suffix")',
combine_and_keep_train(text_len),
])
return c
def add_eval(c, res, text_len=32, **kw):
"""OCR-VQA evaluators."""
pp = '|'.join([
f'decode|resize({res}, antialias=True)|value_range(-1, 1)',
'strfmt("answer en {question}", outkey="prefix")',
'copy(inkey="int_id", outkey="question_id")',
combine_and_keep_eval(text_len, keep=('answer', 'question_id')),
])
for freq, name, split in [
(1/8, 'minitrain', 'train[:5120]'), # To gauge memorization.
(1/4, 'minival', 'val[:20_000]'), # To tune hparams. SLOW!
(1.0, 'eval', 'test'), # Final number to report. Big => rare.
]:
c.evals[f'ocrvqa/{name}'] = dict(
type='proj.paligemma.transfers.vqa',
to_lower=True,
pred='decode', pred_kw={'max_decode_len': text_len},
data={**training_data(res, final_split=True, text_len=text_len).data, 'split': split},
log_percent=freq, skip_first=freq == 1, tokenizer=TOKENIZER, pp_fn=pp)
c.evals[f'ocrvqa/{name}'].update(kw)
def add_eval_pplx(c, res, text_len=32):
"""Perplexity evaluator to test runs before implementing the real deal."""
c_train = training_data(res, final_split=True, text_len=text_len) # Use mostly same settings as training.
for name, split in [
('minitrain', 'train[:5120]'), # To gauge memorization.
('minival', 'val[:20_000]'), # To tune hparams.
('eval', 'test'), # To compute final publishable scores.
]:
c.evals[f'ocrvqa/{name}/pplx'] = dict(
type='proj.paligemma.perplexity', pred='logits',
key='text', shift_labels=True,
log_percent=0.1, # Eval ~10x per run;
data={**c_train.data, 'split': split},
pp_fn=c_train.pp,
)
def sweep_best(add, arg=None):
"""Train with best hyper-params."""
c = bvcc.parse_arg(arg, final_split=False)
add(**bvcc.arg(res=224, **c), lr=3e-6)
add(**bvcc.arg(res=448, **c), lr=3e-6)
add(**bvcc.arg(res=896, **c), lr=1e-5)
sweep = sweep_best # Choose which sweep to run.
def get_config(arg=None):
"""Config for training."""
c = bvcc.parse_arg(arg, mode='xm', res=224, final_split=False)
c.input = training_data(c.res, final_split=c.final_split)
# Instead of epochs, you can also use `total_examples` or `total_steps`.
c.total_epochs = 3
c.input.batch_size = 128
c.optax_name = 'scale_by_adam'
c.optax = dict(b2=0.999)
c.lr = 3e-6
c.wd = 0.0
c.grad_clip_norm = 1.0
c.label_smoothing = 0.0
c.schedule = dict(decay_type='cosine', warmup_percent=0.05)
# Add evaluators.
c.evals = {}
add_eval(c, c.res, batch_size=256)
add_eval_pplx(c, c.res)
# Model section.
c.model_name = 'proj.paligemma.paligemma'
c.model = {}
c.model.img = dict(variant='So400m/14', pool_type='none', scan=True)
c.model.llm = dict(vocab_size=256_000 + 1024 + 128, dropout=0.0)
c.model_init = f'pt_{c.res}'
# FSDP strategy.
c.mesh = [('data', -1)]
c.sharding_strategy = [('.*', 'fsdp(axis="data")')]
c.sharding_rules = [('act_batch', ('data',))]
# These probably do not need any change/tuning
c.input.shuffle_buffer_size = 50_000
c.log_training_steps = 50
c.ckpt_steps = 1_000
c.pp_modules = ['ops_general', 'ops_image', 'ops_text', 'proj.paligemma.ops']
# Update configs for quicker local runs and avoid swapping.
if c.mode in ('runlocal', 'mock'):
c.input.shuffle_buffer_size = None
for ev in c.evals.values():
ev.data.split = ev.data.split.split('[')[0] + '[:16]'
if c.mode == 'runlocal':
c.log_training_steps = 1
c.input.batch_size = 2
c.seed = 0
return c
def metrics(arg=None): # pylint: disable=unused-argument
m = ['training_loss']
for split in ('eval', 'minival', 'minitrain'):
m.append(f'ocrvqa/{split}/acc')
return m
|