File size: 7,208 Bytes
74e8f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=line-too-long
r"""PaliGemma transfer to RefCOCO (with segmentation).
"""
import big_vision.configs.common as bvcc
from big_vision.configs.proj.paligemma.transfers.common import combine_and_keep_train, combine_and_keep_eval, TOKENIZER
def training_data(res, text_len=48, crop='rs'):
"""Creates training data config.
See (internal link)
You can add more arguments beside `res`, but give them good defaults.
Args:
res: The requested image resolution (eg 224)
text_len: sequence length
crop: What way to do random cropping to get to res.
Returns:
The ConfigDict for the input section.
"""
c = bvcc.parse_arg('') # Just make a configdict without extra import.
c.data = dict(
name='ref_coco_bv/refcocox_combined:1.4.0',
split='train',
)
if crop == 'rs':
crop_ops = f'resize({res})'
elif crop == 'zic_mild':
crop_ops = '|'.join([
'zoomout(max_f=1.5, key="image", bboxkey="objects/bbox", auxkeys=["objects/mask"])',
f'inception_box(area=(0.1,1.0), aspect=({3/4},{4/3}), min_obj_cover=1.0, bboxkey="objects/bbox")',
'box_crop_bbox',
'box_crop_img(key="objects/mask")',
'box_crop_img(key="image")',
f'resize({res})',
])
else:
raise ValueError(crop)
c.pp = '|'.join([
'flatten',
'choice_no_replacement(key=["objects/mask", "objects/bbox", "objects/refs/sentence"])',
'choice(key=["objects/refs/sentence"])',
'decode',
crop_ops,
'value_range(-1, 1)',
'refcoco_mask2str',
combine_and_keep_train(text_len),
])
return c
def add_eval(c, res, text_len=48, **kw):
"""Segmentation evaluator computing mIoU."""
# NOTE: we verified that squeezing to square at eval time is no worse than
# padding with black borders. The actual evaluation is still done in original
# full resolution of the mask, of course.
pp_eval_squeeze = '|'.join([
'flatten',
# (choice simply removes a dimension since it's already flattened)
'choice(key=["objects/mask", "objects/bbox", "objects/refs/sentence"])',
'choice(key=["objects/refs/sentence"], outkey="prefix")',
# 'refcoco_mask2str', # TODO: b/lbeyer - also eval decoded GT mask?
f'decode|resize({res})|value_range(-1, 1)',
combine_and_keep_eval(text_len, keep=('objects/mask', 'objects/bbox', 'width', 'height')),
])
for freq, name, ds_name, split in [
(0.2, 'refcoco/val', 'ref_coco_bv/refcoco_unc:1.4.0', 'validation_flat'),
(1.0, 'refcoco/testA', 'ref_coco_bv/refcoco_unc:1.4.0', 'testA_flat'),
(1.0, 'refcoco/testB', 'ref_coco_bv/refcoco_unc:1.4.0', 'testB_flat'),
(1.0, 'refcocop/val', 'ref_coco_bv/refcocoplus_unc:1.4.0', 'validation_flat'),
(1.0, 'refcocop/testA', 'ref_coco_bv/refcocoplus_unc:1.4.0', 'testA_flat'),
(1.0, 'refcocop/testB', 'ref_coco_bv/refcocoplus_unc:1.4.0', 'testB_flat'),
(1.0, 'refcocog/val', 'ref_coco_bv/refcocog_umd:1.4.0', 'validation_flat'),
(1.0, 'refcocog/test', 'ref_coco_bv/refcocog_umd:1.4.0', 'test_flat'),
]:
c.evals[f'seg/{name}'] = dict(
type='proj.paligemma.transfers.segmentation',
pred='decode', pred_kw={'max_decode_len': text_len},
data={'name': ds_name, 'split': split},
log_percent=freq, skip_first=freq == 1,
tokenizer=TOKENIZER, pp_fn=pp_eval_squeeze)
c.evals[f'seg/{name}'].update(kw)
def add_eval_pplx(c, res, text_len=48):
"""Perplexity evaluator to test runs before implementing the real deal."""
c_train = training_data(res, text_len) # Use mostly same settings as training.
for name, split in [
('minitrain', 'train[:5%]'), # 1_220
('val', 'validation'), # 2_738
]:
c.evals[f'refcoco_seg/{name}/pplx'] = dict(
type='proj.paligemma.perplexity', pred='logits',
key='text', shift_labels=True,
log_percent=0.05, # Eval ~20x per run; it's cheap.
data={**c_train.data, 'split': split},
pp_fn=c_train.pp,
)
def sweep_best(add, arg=None): # pylint: disable=unused-argument
"""Train with best hyper-params per resolution."""
# Based on (internal link)
add(**bvcc.arg(res=224), lr=3e-5, total_epochs=100, label_smoothing=0.3,
**{'model.llm.dropout': 0.1, 'input.batch_size': 256})
add(**bvcc.arg(res=448), lr=1e-5, total_epochs=100, label_smoothing=0.3,
**{'model.llm.dropout': 0.0, 'input.batch_size': 256})
# Takes 2d on 16 TPUv5e, gives overall +0.5-+1 over 448.
add(**bvcc.arg(res=896), lr=1e-5, total_epochs=100, label_smoothing=0.3,
**{'model.llm.dropout': 0.0, 'input.batch_size': 64})
sweep = sweep_best # Choose which sweep to run.
def get_config(arg=None):
"""Default "reasonably good" training config, gets about 75/67/70."""
c = bvcc.parse_arg(arg, mode='xm', res=448, crop='rs')
c.input = training_data(c.res, crop=c.crop)
# Instead of epochs, you can also use `total_examples` or `total_steps`.
c.total_epochs = 5
c.input.batch_size = 64
c.optax_name = 'scale_by_adam'
c.optax = dict(b2=0.999)
c.lr = 1e-5
c.wd = 0.0
c.grad_clip_norm = 1.0
c.label_smoothing = 0.3
c.schedule = dict(decay_type='cosine', warmup_percent=0.05)
# Add evaluators.
c.evals = {}
add_eval(c, c.res, batch_size=256)
add_eval_pplx(c, c.res)
# Model section.
c.model_name = 'proj.paligemma.paligemma'
c.model = {}
c.model.img = dict(variant='So400m/14', pool_type='none', scan=True, dropout=0.0)
c.model.llm = dict(vocab_size=256_000 + 1024 + 128, dropout=0.0)
c.model_init = f'pt_{c.res}'
# FSDP strategy.
c.mesh = [('data', -1)]
c.sharding_strategy = [('.*', 'fsdp(axis="data")')]
c.sharding_rules = [('act_batch', ('data',))]
# These probably do not need any change/tuning
c.input.shuffle_buffer_size = 50_000
c.log_training_steps = 50
c.ckpt_steps = 1_000
c.pp_modules = [
'ops_general', 'ops_image', 'ops_text', 'proj.paligemma.ops',
'proj.paligemma.segmentation',
]
# Update configs for quicker local runs and avoid swapping.
if c.mode in ('runlocal', 'mock'):
c.input.shuffle_buffer_size = None
for ev in c.evals.values():
ev.data.split = ev.data.split.split('[')[0] + '[:16]'
if c.mode == 'runlocal':
c.log_training_steps = 1
c.input.batch_size = 2
c.seed = 0
return c
def metrics(arg=None): # pylint: disable=unused-argument
m = ['training_loss']
for thing in ('miou', 'boxacc/0.5', 'invalid'):
m.append(f'seg/refcoco/val/{thing}')
for split in ('/testA', '/testB', 'p/val', 'p/testA', 'p/testB', 'g/val', 'g/test'):
m.append(f'seg/refcoco{split}/miou')
return m
|