File size: 7,208 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# pylint: disable=line-too-long
r"""PaliGemma transfer to RefCOCO (with segmentation).
"""

import big_vision.configs.common as bvcc
from big_vision.configs.proj.paligemma.transfers.common import combine_and_keep_train, combine_and_keep_eval, TOKENIZER


def training_data(res, text_len=48, crop='rs'):
  """Creates training data config.

  See (internal link)
  You can add more arguments beside `res`, but give them good defaults.

  Args:
    res: The requested image resolution (eg 224)
    text_len: sequence length
    crop: What way to do random cropping to get to res.

  Returns:
    The ConfigDict for the input section.
  """
  c = bvcc.parse_arg('')  # Just make a configdict without extra import.
  c.data = dict(
      name='ref_coco_bv/refcocox_combined:1.4.0',
      split='train',
  )

  if crop == 'rs':
    crop_ops = f'resize({res})'
  elif crop == 'zic_mild':
    crop_ops = '|'.join([
        'zoomout(max_f=1.5, key="image", bboxkey="objects/bbox", auxkeys=["objects/mask"])',
        f'inception_box(area=(0.1,1.0), aspect=({3/4},{4/3}), min_obj_cover=1.0, bboxkey="objects/bbox")',
        'box_crop_bbox',
        'box_crop_img(key="objects/mask")',
        'box_crop_img(key="image")',
        f'resize({res})',
    ])
  else:
    raise ValueError(crop)

  c.pp = '|'.join([
      'flatten',
      'choice_no_replacement(key=["objects/mask", "objects/bbox", "objects/refs/sentence"])',
      'choice(key=["objects/refs/sentence"])',
      'decode',
      crop_ops,
      'value_range(-1, 1)',
      'refcoco_mask2str',
      combine_and_keep_train(text_len),
  ])
  return c


def add_eval(c, res, text_len=48, **kw):
  """Segmentation evaluator computing mIoU."""
  # NOTE: we verified that squeezing to square at eval time is no worse than
  # padding with black borders. The actual evaluation is still done in original
  # full resolution of the mask, of course.
  pp_eval_squeeze = '|'.join([
      'flatten',
      # (choice simply removes a dimension since it's already flattened)
      'choice(key=["objects/mask", "objects/bbox", "objects/refs/sentence"])',
      'choice(key=["objects/refs/sentence"], outkey="prefix")',
      # 'refcoco_mask2str',  # TODO: b/lbeyer - also eval decoded GT mask?
      f'decode|resize({res})|value_range(-1, 1)',
      combine_and_keep_eval(text_len, keep=('objects/mask', 'objects/bbox', 'width', 'height')),
  ])

  for freq, name, ds_name, split in [
      (0.2, 'refcoco/val', 'ref_coco_bv/refcoco_unc:1.4.0', 'validation_flat'),
      (1.0, 'refcoco/testA', 'ref_coco_bv/refcoco_unc:1.4.0', 'testA_flat'),
      (1.0, 'refcoco/testB', 'ref_coco_bv/refcoco_unc:1.4.0', 'testB_flat'),
      (1.0, 'refcocop/val', 'ref_coco_bv/refcocoplus_unc:1.4.0', 'validation_flat'),
      (1.0, 'refcocop/testA', 'ref_coco_bv/refcocoplus_unc:1.4.0', 'testA_flat'),
      (1.0, 'refcocop/testB', 'ref_coco_bv/refcocoplus_unc:1.4.0', 'testB_flat'),
      (1.0, 'refcocog/val', 'ref_coco_bv/refcocog_umd:1.4.0', 'validation_flat'),
      (1.0, 'refcocog/test', 'ref_coco_bv/refcocog_umd:1.4.0', 'test_flat'),
  ]:
    c.evals[f'seg/{name}'] = dict(
        type='proj.paligemma.transfers.segmentation',
        pred='decode', pred_kw={'max_decode_len': text_len},
        data={'name': ds_name, 'split': split},
        log_percent=freq, skip_first=freq == 1,
        tokenizer=TOKENIZER, pp_fn=pp_eval_squeeze)
    c.evals[f'seg/{name}'].update(kw)


def add_eval_pplx(c, res, text_len=48):
  """Perplexity evaluator to test runs before implementing the real deal."""
  c_train = training_data(res, text_len)  # Use mostly same settings as training.
  for name, split in [
      ('minitrain', 'train[:5%]'),  # 1_220
      ('val', 'validation'),  # 2_738
  ]:
    c.evals[f'refcoco_seg/{name}/pplx'] = dict(
        type='proj.paligemma.perplexity', pred='logits',
        key='text', shift_labels=True,
        log_percent=0.05,  # Eval ~20x per run; it's cheap.
        data={**c_train.data, 'split': split},
        pp_fn=c_train.pp,
    )


def sweep_best(add, arg=None):  # pylint: disable=unused-argument
  """Train with best hyper-params per resolution."""
  # Based on (internal link)
  add(**bvcc.arg(res=224), lr=3e-5, total_epochs=100, label_smoothing=0.3,
      **{'model.llm.dropout': 0.1, 'input.batch_size': 256})
  add(**bvcc.arg(res=448), lr=1e-5, total_epochs=100, label_smoothing=0.3,
      **{'model.llm.dropout': 0.0, 'input.batch_size': 256})
  # Takes 2d on 16 TPUv5e, gives overall +0.5-+1 over 448.
  add(**bvcc.arg(res=896), lr=1e-5, total_epochs=100, label_smoothing=0.3,
      **{'model.llm.dropout': 0.0, 'input.batch_size': 64})


sweep = sweep_best  # Choose which sweep to run.


def get_config(arg=None):
  """Default "reasonably good" training config, gets about 75/67/70."""
  c = bvcc.parse_arg(arg, mode='xm', res=448, crop='rs')

  c.input = training_data(c.res, crop=c.crop)

  # Instead of epochs, you can also use `total_examples` or `total_steps`.
  c.total_epochs = 5
  c.input.batch_size = 64
  c.optax_name = 'scale_by_adam'
  c.optax = dict(b2=0.999)
  c.lr = 1e-5
  c.wd = 0.0
  c.grad_clip_norm = 1.0
  c.label_smoothing = 0.3
  c.schedule = dict(decay_type='cosine', warmup_percent=0.05)

  # Add evaluators.
  c.evals = {}
  add_eval(c, c.res, batch_size=256)
  add_eval_pplx(c, c.res)

  # Model section.
  c.model_name = 'proj.paligemma.paligemma'
  c.model = {}
  c.model.img = dict(variant='So400m/14', pool_type='none', scan=True, dropout=0.0)
  c.model.llm = dict(vocab_size=256_000 + 1024 + 128, dropout=0.0)
  c.model_init = f'pt_{c.res}'

  # FSDP strategy.
  c.mesh = [('data', -1)]
  c.sharding_strategy = [('.*', 'fsdp(axis="data")')]
  c.sharding_rules = [('act_batch', ('data',))]

  # These probably do not need any change/tuning
  c.input.shuffle_buffer_size = 50_000
  c.log_training_steps = 50
  c.ckpt_steps = 1_000
  c.pp_modules = [
      'ops_general', 'ops_image', 'ops_text', 'proj.paligemma.ops',
      'proj.paligemma.segmentation',
  ]

  # Update configs for quicker local runs and avoid swapping.
  if c.mode in ('runlocal', 'mock'):
    c.input.shuffle_buffer_size = None
    for ev in c.evals.values():
      ev.data.split = ev.data.split.split('[')[0] + '[:16]'

  if c.mode == 'runlocal':
    c.log_training_steps = 1
    c.input.batch_size = 2

  c.seed = 0
  return c


def metrics(arg=None):  # pylint: disable=unused-argument
  m = ['training_loss']
  for thing in ('miou', 'boxacc/0.5', 'invalid'):
    m.append(f'seg/refcoco/val/{thing}')
  for split in ('/testA', '/testB', 'p/val', 'p/testA', 'p/testB', 'g/val', 'g/test'):
    m.append(f'seg/refcoco{split}/miou')
  return m