File size: 5,656 Bytes
74e8f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=line-too-long
r"""PaliGemma transfer to TextVQA.
"""
import big_vision.configs.common as bvcc
from big_vision.configs.proj.paligemma.transfers.common import combine_and_keep_train, combine_and_keep_eval, TOKENIZER
def training_data(res, *, final_split, text_len=32):
"""Creates training data config.
See (internal link)
You can add more arguments beside `res`, but give them good defaults.
Args:
res: The requested image resolution (eg 224).
final_split: Train on all train+val data.
text_len: sequence length.
Returns:
The ConfigDict for the input section.
"""
c = bvcc.parse_arg('') # Just make a configdict without extra import.
c.data = dict(
name='textvqa',
split='train+val' if final_split else 'train',
)
c.pp = '|'.join([
f'decode|resize({res}, antialias=True)|value_range(-1, 1)',
'strfmt("answer en {question}", outkey="prefix")',
'choice_no_replacement(inkey="answers", outkey="suffix")',
combine_and_keep_train(text_len),
])
return c
def add_eval(c, res, text_len=32, **kw):
"""TextVQA evaluators."""
pp = '|'.join([
f'decode|resize({res}, antialias=True)|value_range(-1, 1)',
'strfmt("answer en {question}", outkey="prefix")',
# TextVQA does not have a "answer_type", but if we use an answer_type
# that is used in VQAv2, we can just reuse that evaluator. Use "other".
'strfmt("other", outkey="answer_type")',
combine_and_keep_eval(text_len, keep=('answers', 'answer_type', 'question_id')),
])
for freq, name, split in [
(1/8, 'minitrain', 'train[:5120]'), # To gauge memorization.
(1/8, 'eval', 'val'), # To tune hparams. Only 5k samples in val.
(1.0, 'test', 'test'),
]:
c.evals[f'textvqa/{name}'] = dict(
type='proj.paligemma.transfers.vqav2',
pred='decode', pred_kw={'max_decode_len': text_len},
outfile=f'{{workdir}}/textvqa_{name}.json',
data={**training_data(res, final_split=True, text_len=text_len).data,
'split': split},
log_percent=freq, skip_first=freq == 1, tokenizer=TOKENIZER, pp_fn=pp)
c.evals[f'textvqa/{name}'].update(kw)
def add_eval_pplx(c, res, text_len=32):
"""Perplexity evaluator to test runs before implementing the real deal."""
c_train = training_data(res, final_split=True, text_len=text_len) # Use mostly same settings as training.
for name, split in [
('minitrain', 'train[:5%]'), # To gauge memorization.
('eval', 'val'), # To tune hparams.
]:
c.evals[f'textvqa/{name}/pplx'] = dict(
type='proj.paligemma.perplexity', pred='logits',
key='text', shift_labels=True,
log_percent=0.05, # Eval ~20x per run; it's cheap.
data={**c_train.data, 'split': split},
pp_fn=c_train.pp,
)
def sweep_best(add, arg=None):
"""Train with best hyper-params."""
c = bvcc.parse_arg(arg, final_split=False)
add(lr=3e-6, wd=0, total_epochs=5, **bvcc.arg(res=224, **c))
add(lr=3e-6, wd=3e-7, total_epochs=10, **bvcc.arg(res=448, **c))
add(lr=3e-6, wd=0, total_epochs=10, **bvcc.arg(res=896, **c))
sweep = sweep_best # Choose which sweep to run.
def get_config(arg=None):
"""Config for training."""
c = bvcc.parse_arg(arg, mode='xm', res=224, final_split=False)
c.input = training_data(c.res, final_split=c.final_split)
# Instead of epochs, you can also use `total_examples` or `total_steps`.
c.total_epochs = 5 # For 448, 10 epochs seems to work better.
c.input.batch_size = 256
c.optax_name = 'scale_by_adam'
c.optax = dict(b2=0.999)
c.lr = 3e-6
c.wd = 0.0 # wd doesn't seem to matter much, sometimes 0.1*lr is a bit better.
c.grad_clip_norm = 1.0
c.label_smoothing = 0.0
c.schedule = dict(decay_type='cosine', warmup_percent=0.05)
# Add evaluators.
c.evals = {}
add_eval(c, c.res, batch_size=256)
add_eval_pplx(c, c.res)
# Model section.
c.model_name = 'proj.paligemma.paligemma'
c.model = {}
c.model.img = dict(variant='So400m/14', pool_type='none', scan=True)
c.model.llm = dict(vocab_size=256_000 + 1024 + 128, dropout=0.0)
c.model_init = f'pt_{c.res}'
# FSDP strategy.
c.mesh = [('data', -1)]
c.sharding_strategy = [('.*', 'fsdp(axis="data")')]
c.sharding_rules = [('act_batch', ('data',))]
# These probably do not need any change/tuning
c.input.shuffle_buffer_size = 50_000
c.log_training_steps = 50
c.ckpt_steps = 1_000
c.pp_modules = ['ops_general', 'ops_image', 'ops_text', 'proj.paligemma.ops']
# Update configs for quicker local runs and avoid swapping.
if c.mode in ('runlocal', 'mock'):
c.input.shuffle_buffer_size = None
for ev in c.evals.values():
ev.data.split = ev.data.split.split('[')[0] + '[:16]'
if c.mode == 'runlocal':
c.log_training_steps = 1
c.input.batch_size = 2
c.seed = 0
return c
def metrics(arg=None): # pylint: disable=unused-argument
m = ['training_loss']
for split in ('eval', 'minitrain'):
m.append(f'textvqa/{split}/acc')
m.append(f'textvqa/{split}/pplx/avg')
return m
|