File size: 8,503 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Object detection reward from "Tuning computer vision models with task rewards" (https://arxiv.org/abs/2302.08242).

The `reward_fn` computes the reward for a batch of predictions and ground truth
annotations. When using it to optimize a model that outputs a prediction as a
sequence of tokens like [y0, x0, Y0, X0, class0, confidence0, y1, x1, Y1, ...]
the training loop may look like:

```
# Settings used in the paper.
config.max_level = 1000  # Coordinates are discretized into 1000 buckets.
config.max_conf = 2 # Two tokens are reserved to represent confidence.
config.num_cls = 80 # Number of classes in COCO.
config.nms_w = 0.3  # Weight for duplicate instances.
config.cls_smooth = 0.05  # Adjust the classes weights based on their frequency.
config.reward_thr = (0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95)
config.correct_thr = 0.5  # Learn the IoU when matching with threshold=0.5.
config.conf_w = 0.3  # Weight for the confidence loss.


# 1) Sample N outputs for each input and compute rewards, use one sample to
# optimize and others to compute a reward baseline.
sample_seqs = sample_fn(params, images, num_samples)
sample_rewards, aux = reward_fn(sample_seqs, labels, config)
labels = sample_seqs[:, 0, ...]
rewards = sample_rewards[:, 0]
match_iou = aux["match_iou"][:, 0]
baselines = (jnp.sum(sample_rewards, axis=-1) - rewards) / (num_samples - 1)

# 2) Optimizize the model. By using REINFORCE to adjust the likelihood of the
# sequence based on the reward and with supervision to teach the model to
# predict the expected IoU of each box in its own samples.
def loss_fn(params):
  logits = model.apply(params, images, labels, train=True, rngs=rngs)
  logits_softmax = jax.nn.log_softmax(logits)

  # Use reinforce to optimize the expected reward for the whole sequence.
  seq_rewards = (rewards - baselines)
  # Note: consider improve this code to skip this loss for confidence tokens.
  # The paper did not do it due to a bug (and also does not seem to matter).
  target = jax.nn.one_hot(labels, logits.shape[-1]) * seq_rewards[:, None, None]
  loss_reward = -jnp.sum(target * logits_softmax, axis=-1)

  # Use supervision loss to tune the confidence tokens to predict IoU:
  #   - (1.0, 0.0, 0.0, ...)   -> for padded boxes.
  #   - (0.0, 1-iou, iou, ...) -> for sampled boxes.
  conf0 = (labels[:, 5::6] == 0)
  conf1 = (labels[:, 5::6] > 0) * (1.0 - match_iou)
  conf2 = (labels[:, 5::6] > 0) * match_iou
  target_conf = jnp.stack([conf0, conf1, conf2], axis=-1)
  logits_conf = logits_softmax[:, 5::6, :3]
  loss_conf = -jnp.sum(target_conf * logits_conf, axis=-1)

  loss = jnp.mean(loss_reward) + config.conf_w * jnp.mean(loss_conf)
  return loss
```
"""
import functools

import einops
import jax
import jax.numpy as jnp


# Frequency of COCO object detection classes as observed in the training set.
# pylint: disable=bad-whitespace,bad-continuation
CLS_COUNTS = [
    262465,  7113,  43867,   8725,   5135,   6069,   4571,   9973,  10759,
     12884,  1865,   1983,   1285,   9838,  10806,   4768,   5508,   6587,
      9509,  8147,   5513,   1294,   5303,   5131,   8720,  11431,  12354,
      6496,  6192,   2682,   6646,   2685,   6347,   9076,   3276,   3747,
      5543,  6126,   4812,  24342,   7913,  20650,   5479,   7770,   6165,
     14358,  9458,   5851,   4373,   6399,   7308,   7852,   2918,   5821,
      7179,  6353,  38491,   5779,   8652,   4192,  15714,   4157,   5805,
      4970,  2262,   5703,   2855,   6434,   1673,   3334,    225,   5610,
      2637, 24715,   6334,   6613,   1481,   4793,    198,   1954
]
# pylint: enable=bad-whitespace,bad-continuation


def seq2box(seq, max_level, max_conf, num_cls):
  """Extract boxes encoded as sequences."""
  # Reshape to instances of boxes
  dim_per_box = 6
  seq_len = seq.shape[-1]
  seq = seq[..., :(seq_len - seq_len % dim_per_box)]
  seq = einops.rearrange(seq, "... (n d) -> ... n d", d=dim_per_box)

  # Unpack box fields
  boxes, labels, confs = seq[..., 0:4], seq[..., 4], seq[..., 5]
  boxes = boxes - max_conf - 1
  labels = labels - max_conf - 1 - max_level - 1
  boxes = jnp.clip(boxes, 0, max_level) / max_level
  labels = jnp.clip(labels, 0, num_cls - 1)
  confs = jnp.clip(confs, 0, max_conf)

  return boxes, labels, confs


def iou_fn(box1, box2):
  """Compute IoU of two boxes."""
  ymin1, xmin1, ymax1, xmax1 = box1
  ymin2, xmin2, ymax2, xmax2 = box2

  a1 = jnp.abs((ymax1 - ymin1) * (xmax1 - xmin1))
  a2 = jnp.abs((ymax2 - ymin2) * (xmax2 - xmin2))

  yl = jnp.maximum(ymin1, ymin2)
  yr = jnp.minimum(ymax1, ymax2)
  yi = jnp.maximum(0, yr - yl)

  xl = jnp.maximum(xmin1, xmin2)
  xr = jnp.minimum(xmax1, xmax2)
  xi = jnp.maximum(0, xr - xl)

  inter = xi * yi
  return inter / (a1 + a2 - inter + 1e-9)

iou_fn_batched = jax.vmap(
    jax.vmap(iou_fn, in_axes=(None, 0)), in_axes=(0, None)
)


def _reward_fn_thr(seq_pred, seq_gt,
                   thr, nms_w, max_level, max_conf, num_cls, cls_smooth):
  """Compute detection reward function for a given IoU threshold."""
  # Weight matches of each label inversely proportional to the percentage of
  # GT instances with such label in the whole train dataset. Additionally
  # smooth out the observed distribution.
  cls_counts = jnp.array(CLS_COUNTS)
  weights = 1.0 / (cls_counts + cls_smooth*jnp.sum(cls_counts))
  weights = num_cls * weights / jnp.sum(weights)

  boxes_pred, labels_pred, confs_pred = seq2box(
      seq_pred, max_level, max_conf, num_cls)
  boxes_gt, labels_gt, confs_gt = seq2box(
      seq_gt, max_level, max_conf, num_cls)

  # Compute IoU matrix: Predictions X GT
  iou = iou_fn_batched(boxes_pred, boxes_gt)

  # IoU thr
  iou = jnp.where(iou > thr, iou, 0.0)

  # EOS mask
  confs_mask = (confs_pred[:, None] > 0) * (confs_gt[None, :] > 0)
  iou = confs_mask * iou

  # Label mask
  label_mask = labels_pred[:, None] == labels_gt[None, :]
  iou = label_mask * iou

  # Each prediction is matched to a single box
  single_match_mask = jax.nn.one_hot(jnp.argmax(iou, axis=1), iou.shape[1])
  iou = iou * single_match_mask

  # Pred. boxes indicators
  correct = jnp.any(iou > 0.0, axis=1).astype("int32") + 1
  correct = jnp.where(confs_pred > 0, correct, 0)

  # For each GT box find best match
  matches_idx = jnp.argmax(iou, axis=0)
  matches_iou = jnp.take_along_axis(iou, matches_idx[None], axis=0)[0]
  matches_idx = jnp.where(matches_iou > 0.0, matches_idx, -1)

  match_reward = jnp.sum((matches_idx >= 0) * weights[labels_gt][None, :])

  # Compute duplicate penalty (aka NMS).
  matches_mask = jax.nn.one_hot(matches_idx, iou.shape[0], axis=0)
  nms_penalty = jnp.sum(
      (iou > 0.0) * (1 - matches_mask) * weights[labels_pred][:, None])

  match_iou = jnp.sum(iou, axis=1)

  return {
      "reward": (match_reward - nms_w * nms_penalty),
      "num_matches": jnp.sum(matches_idx >= 0),
      "nms_penalty": nms_penalty,
      "correct": correct,
      "match_iou": match_iou,
  }


def reward_fn(seqs_pred, seqs_gt, config):
  """Total reward."""
  result = {}
  thrs = config.reward_thr
  correct_thr = config.correct_thr
  r_keys = ["reward", "num_matches", "nms_penalty"]
  for thr in thrs:
    fn = functools.partial(
        _reward_fn_thr,
        thr=thr,
        nms_w=config.nms_w,
        max_level=config.max_level,
        max_conf=config.max_conf,
        num_cls=config.num_cls,
        cls_smooth=config.cls_smooth,
    )
    rewards = jax.vmap(jax.vmap(fn, in_axes=(0, None)))(seqs_pred, seqs_gt)

    result = {**result, **{f"{k}-{thr:0.1f}": rewards[k]
                           for k in r_keys}}
    if thr == correct_thr:
      correct = rewards["correct"]
      match_iou = rewards["match_iou"]

  result = {
      **result,
      **{k: jnp.mean(
          jnp.array([result[f"{k}-{thr:0.1f}"] for thr in thrs]), axis=0)
         for k in r_keys}
  }

  return result["reward"], {
      "result": result,
      "correct": correct,
      "match_iou": match_iou,
  }