File size: 5,720 Bytes
74e8f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
# Copyright 2022 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=line-too-long
r"""A config for training a UViM stage II model for the depth task.
"""
import big_vision.configs.common as bvcc
from ml_collections import ConfigDict
VTT_MODELS = {
'base': dict(num_layers=12, num_heads=12, mlp_dim=3072, emb_dim=768),
'large': dict(num_layers=24, num_heads=16, mlp_dim=4096, emb_dim=1024),
}
VQVAE_MODELS = {
'base': dict(enc_depth=6, dec_depth=12, num_heads=12, mlp_dim=3072, width=768),
}
RES = 512
PATCH_SIZE = 16
LABEL_RES = 512
LABEL_PATCH_SIZE = 16
QUANTIZATION_BINS = 256
# Same as values used in eval, see evaluators/nyu_depth.py.
MIN_DEPTH = 1e-3
MAX_DEPTH = 10
def get_config(arg='split=final'):
"""Config for training."""
arg = bvcc.parse_arg(arg, split='final', runlocal=False, singlehost=False)
config = ConfigDict()
config.input = {}
config.input.pp = (
f'decode|nyu_depth|'
f'randu("fliplr")|det_fliplr(key="image")|det_fliplr(key="labels")|'
f'inception_box|crop_box(key="image")|crop_box(key="labels")|'
f'resize({RES})|'
f'resize({LABEL_RES},inkey="image",outkey="image_ctx")|'
f'resize({LABEL_RES},key="labels",method="nearest")|'
f'value_range(-1,1)|'
f'value_range(-1,1,inkey="image_ctx",outkey="image_ctx")|'
f'keep("image","image_ctx","labels")'
)
pp_eval = (
f'decode|nyu_depth|'
f'nyu_eval_crop|'
f'resize({RES})|'
f'resize({LABEL_RES},inkey="image",outkey="image_ctx")|'
f'resize({LABEL_RES},key="labels",method="nearest")|'
f'value_range(-1,1)|'
f'value_range(-1,1,inkey="image_ctx",outkey="image_ctx")|'
f'keep("image","image_ctx","labels")'
)
pp_predict = (
f'nyu_depth|'
f'nyu_eval_crop|copy("labels","ground_truth")|'
f'resize({RES})|'
f'resize({LABEL_RES},inkey="image",outkey="image_ctx")|'
f'value_range(-1,1)|'
f'value_range(-1,1,inkey="image_ctx",outkey="image_ctx")|'
f'keep("image","image_ctx","ground_truth")'
)
config.input.data = dict(name='nyu_depth_v2', split='train')
config.input.batch_size = 512
config.input.shuffle_buffer_size = 50_000
config.total_epochs = 50
config.log_training_steps = 50
config.ckpt_steps = 1000
config.keep_ckpt_steps = 5000
config.prefetch_to_device = 2
config.seed = 0
# Optimizer section
config.optax_name = 'big_vision.scale_by_adafactor'
config.optax = dict(beta2_cap=0.95)
config.optax.clipping_threshold = None
config.lr = 0.001
config.wd = 0.000001
config.lr_mults = (
('pos_embedding_encoder.*', 0.1),
('EmbedPatches.*', 0.1),
('encoder.*', 0.1),
('decoder.*', 1.0)
)
config.schedule = dict(decay_type='cosine', warmup_steps=4_000)
# Oracle section
config.oracle = ConfigDict()
config.oracle.min_depth = MIN_DEPTH
config.oracle.max_depth = MAX_DEPTH
config.oracle.task = 'proj.uvim.depth_task'
config.oracle.model_init = 'gs://big_vision/uvim/depth_stageI_params.npz'
config.oracle.model_name = 'proj.uvim.vit'
config.oracle.model = ConfigDict(VQVAE_MODELS['base'])
config.oracle.model.input_size = (LABEL_RES, LABEL_RES)
config.oracle.model.patch_size = (LABEL_PATCH_SIZE, LABEL_PATCH_SIZE)
config.oracle.model.code_len = 256
config.oracle.model.dict_size = 4096
config.oracle.model.codeword_dim = 768
config.oracle.model.with_encoder_ctx = True
config.oracle.model.with_decoder_ctx = True
config.oracle.model.code_dropout = 'random'
config.oracle.model.bottleneck_resize = True
config.oracle.model.inputs = {
'depth': (QUANTIZATION_BINS, LABEL_PATCH_SIZE**2,),
}
config.oracle.model.outputs = config.oracle.model.inputs
# Model section
config.model_name = 'proj.uvim.vtt'
# config.model_init = {'encoder': 'howto-i21k-B/8''} # B/8 I21K
config.model_init = {'encoder': 'howto-i21k-L/16'} # L/16 I21K
config.model = ConfigDict(VTT_MODELS['large'])
config.model.patches = ConfigDict({'size': (PATCH_SIZE, PATCH_SIZE)})
config.model.vocab_size = config.oracle.model.dict_size + 1
config.model.posemb_type = 'learn'
config.model.input_size = (RES, RES)
config.model.seq_len = config.oracle.model.get_ref('code_len')
config.model.zero_decoder_seq = False
# Evaluation section
config.evals = {}
config.evals.val = ConfigDict()
config.evals.val.type = 'proj.uvim.compute_mean'
config.evals.val.pred = 'validation'
config.evals.val.data = {**config.input.data}
config.evals.val.data.split = 'validation'
config.evals.val.pp_fn = pp_eval
config.evals.val.log_steps = 1000
base = {
'type': 'proj.uvim.nyu_depth',
'dataset': config.input.data.name,
'pp_fn': pp_predict,
'log_steps': 2000,
'min_depth': MIN_DEPTH,
'max_depth': MAX_DEPTH,
}
config.evals.nyu_depth_val = dict(**base, split='validation')
if arg.singlehost:
config.input.batch_size = 32
config.total_epochs = 20
elif arg.runlocal:
config.oracle.model_init = '/tmp/checkpoint.npz'
config.model_init = {'encoder': '/tmp/enc_checkpoint.npz'}
config.evals = {}
config.input.batch_size = 1
config.input.shuffle_buffer_size = 10
return config |