File size: 5,720 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# Copyright 2022 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# pylint: disable=line-too-long
r"""A config for training a UViM stage II model for the depth task.
"""

import big_vision.configs.common as bvcc
from ml_collections import ConfigDict


VTT_MODELS = {
    'base': dict(num_layers=12, num_heads=12, mlp_dim=3072, emb_dim=768),
    'large': dict(num_layers=24, num_heads=16, mlp_dim=4096, emb_dim=1024),
}

VQVAE_MODELS = {
    'base': dict(enc_depth=6, dec_depth=12, num_heads=12, mlp_dim=3072, width=768),
}


RES = 512
PATCH_SIZE = 16
LABEL_RES = 512
LABEL_PATCH_SIZE = 16
QUANTIZATION_BINS = 256
# Same as values used in eval, see evaluators/nyu_depth.py.
MIN_DEPTH = 1e-3
MAX_DEPTH = 10


def get_config(arg='split=final'):
  """Config for training."""
  arg = bvcc.parse_arg(arg, split='final', runlocal=False, singlehost=False)
  config = ConfigDict()

  config.input = {}
  config.input.pp = (
      f'decode|nyu_depth|'
      f'randu("fliplr")|det_fliplr(key="image")|det_fliplr(key="labels")|'
      f'inception_box|crop_box(key="image")|crop_box(key="labels")|'
      f'resize({RES})|'
      f'resize({LABEL_RES},inkey="image",outkey="image_ctx")|'
      f'resize({LABEL_RES},key="labels",method="nearest")|'
      f'value_range(-1,1)|'
      f'value_range(-1,1,inkey="image_ctx",outkey="image_ctx")|'
      f'keep("image","image_ctx","labels")'
  )
  pp_eval = (
      f'decode|nyu_depth|'
      f'nyu_eval_crop|'
      f'resize({RES})|'
      f'resize({LABEL_RES},inkey="image",outkey="image_ctx")|'
      f'resize({LABEL_RES},key="labels",method="nearest")|'
      f'value_range(-1,1)|'
      f'value_range(-1,1,inkey="image_ctx",outkey="image_ctx")|'
      f'keep("image","image_ctx","labels")'
  )
  pp_predict = (
      f'nyu_depth|'
      f'nyu_eval_crop|copy("labels","ground_truth")|'
      f'resize({RES})|'
      f'resize({LABEL_RES},inkey="image",outkey="image_ctx")|'
      f'value_range(-1,1)|'
      f'value_range(-1,1,inkey="image_ctx",outkey="image_ctx")|'
      f'keep("image","image_ctx","ground_truth")'
  )

  config.input.data = dict(name='nyu_depth_v2', split='train')
  config.input.batch_size = 512
  config.input.shuffle_buffer_size = 50_000

  config.total_epochs = 50

  config.log_training_steps = 50
  config.ckpt_steps = 1000
  config.keep_ckpt_steps = 5000
  config.prefetch_to_device = 2
  config.seed = 0

  # Optimizer section
  config.optax_name = 'big_vision.scale_by_adafactor'
  config.optax = dict(beta2_cap=0.95)
  config.optax.clipping_threshold = None

  config.lr = 0.001
  config.wd = 0.000001
  config.lr_mults = (
      ('pos_embedding_encoder.*', 0.1),
      ('EmbedPatches.*', 0.1),
      ('encoder.*', 0.1),
      ('decoder.*', 1.0)
  )
  config.schedule = dict(decay_type='cosine', warmup_steps=4_000)

  # Oracle section
  config.oracle = ConfigDict()
  config.oracle.min_depth = MIN_DEPTH
  config.oracle.max_depth = MAX_DEPTH
  config.oracle.task = 'proj.uvim.depth_task'
  config.oracle.model_init = 'gs://big_vision/uvim/depth_stageI_params.npz'
  config.oracle.model_name = 'proj.uvim.vit'
  config.oracle.model = ConfigDict(VQVAE_MODELS['base'])
  config.oracle.model.input_size = (LABEL_RES, LABEL_RES)
  config.oracle.model.patch_size = (LABEL_PATCH_SIZE, LABEL_PATCH_SIZE)
  config.oracle.model.code_len = 256
  config.oracle.model.dict_size = 4096
  config.oracle.model.codeword_dim = 768
  config.oracle.model.with_encoder_ctx = True
  config.oracle.model.with_decoder_ctx = True
  config.oracle.model.code_dropout = 'random'
  config.oracle.model.bottleneck_resize = True
  config.oracle.model.inputs = {
      'depth': (QUANTIZATION_BINS, LABEL_PATCH_SIZE**2,),
  }
  config.oracle.model.outputs = config.oracle.model.inputs

  # Model section
  config.model_name = 'proj.uvim.vtt'
  # config.model_init = {'encoder': 'howto-i21k-B/8''}  # B/8 I21K
  config.model_init = {'encoder': 'howto-i21k-L/16'}  # L/16 I21K
  config.model = ConfigDict(VTT_MODELS['large'])
  config.model.patches = ConfigDict({'size': (PATCH_SIZE, PATCH_SIZE)})
  config.model.vocab_size = config.oracle.model.dict_size + 1
  config.model.posemb_type = 'learn'
  config.model.input_size = (RES, RES)
  config.model.seq_len = config.oracle.model.get_ref('code_len')
  config.model.zero_decoder_seq = False

  # Evaluation section
  config.evals = {}
  config.evals.val = ConfigDict()
  config.evals.val.type = 'proj.uvim.compute_mean'
  config.evals.val.pred = 'validation'
  config.evals.val.data = {**config.input.data}
  config.evals.val.data.split = 'validation'
  config.evals.val.pp_fn = pp_eval
  config.evals.val.log_steps = 1000

  base = {
      'type': 'proj.uvim.nyu_depth',
      'dataset': config.input.data.name,
      'pp_fn': pp_predict,
      'log_steps': 2000,
      'min_depth': MIN_DEPTH,
      'max_depth': MAX_DEPTH,
  }
  config.evals.nyu_depth_val = dict(**base, split='validation')

  if arg.singlehost:
    config.input.batch_size = 32
    config.total_epochs = 20
  elif arg.runlocal:
    config.oracle.model_init = '/tmp/checkpoint.npz'
    config.model_init = {'encoder': '/tmp/enc_checkpoint.npz'}
    config.evals = {}
    config.input.batch_size = 1
    config.input.shuffle_buffer_size = 10
  return config