File size: 5,177 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# Copyright 2022 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# pylint: disable=line-too-long
r"""A config for training a UViM stage I model for the panoptic task.

This config is expected to reproduce the paper's result and achieve
approximately 75.7 PQ points on the COCO holdout data.

We also provide a low-resource variant of this config, which can be enabled
by adding `:singlehost` postfix to the config name. This one is expected to
achieve 67.8 PQ points on the COCO holdout data.
"""

import itertools
import big_vision.configs.common as bvcc
import ml_collections as mlc


def get_config(arg='res=512,patch_size=16'):
  """Config for training label compression on COCO-panoptic."""
  arg = bvcc.parse_arg(arg, res=512, patch_size=16,
                       runlocal=False, singlehost=False)
  config = mlc.ConfigDict()

  config.task = 'proj.uvim.panoptic_task'

  config.input = {}
  config.input.data = dict(name='coco/2017_panoptic', split='train[4096:]')

  config.input.batch_size = 1024
  config.input.shuffle_buffer_size = 25_000

  config.total_epochs = 1000

  config.input.pp = (
      f'decode|coco_panoptic|concat(["semantics","instances"], "labels")|'
      f'randu("fliplr")|det_fliplr(key="image")|det_fliplr(key="labels")|'
      f'inception_box|crop_box(key="image")|crop_box(key="labels")|'
      f'resize({arg.res})|resize({arg.res},key="labels",method="nearest")|'
      f'value_range(-1, 1)|make_canonical|keep("image","labels")'
  )
  pp_eval = (
      f'decode|coco_panoptic|concat(["semantics","instances"], "labels")|'
      f'resize({arg.res})|resize({arg.res},key="labels",method="nearest")|'
      f'value_range(-1, 1)|make_canonical|keep("image","labels")'
  )

  config.log_training_steps = 50
  config.ckpt_steps = 1000
  config.keep_ckpt_steps = 20_000

  # Model section
  config.model_name = 'proj.uvim.vit'
  config.model = mlc.ConfigDict()
  config.model.input_size = (arg.res, arg.res)
  config.model.patch_size = (arg.patch_size, arg.patch_size)
  config.model.code_len = 256
  config.model.width = 768
  config.model.enc_depth = 6
  config.model.dec_depth = 12
  config.model.mlp_dim = 3072
  config.model.num_heads = 12
  config.model.dict_size = 4096  # Number of words in dict.
  config.model.codeword_dim = 768
  config.model.dict_momentum = 0.995  # Momentum for dict. learning.
  config.model.with_encoder_ctx = True
  config.model.with_decoder_ctx = True
  config.model.code_dropout = 'random'
  config.model.bottleneck_resize = True
  config.model.inputs = {
      'semantics': (133 + 1, arg.patch_size**2),  # +1 for void label
      'instances': (100, arg.patch_size**2),  # COCO: actually 98 train/78 validation.
  }
  config.model.outputs = config.model.inputs

  # VQVAE-specific params.
  config.freeze_dict = False  # Will freeze a dict. inside VQ-VAE model.
  config.w_commitment = 0.0

  # Optimizer section
  config.optax_name = 'big_vision.scale_by_adafactor'
  config.optax = dict(beta2_cap=0.95)

  config.lr = 4e-4
  config.wd = 4e-5
  config.schedule = dict(decay_type='cosine', warmup_steps=4_000)
  config.grad_clip_norm = 1.0

  # Evaluation section
  config.evals = {}
  config.evals.val = mlc.ConfigDict()
  config.evals.val.type = 'proj.uvim.compute_mean'
  config.evals.val.pred = 'validation'
  config.evals.val.data = {**config.input.data}
  config.evals.val.data.split = 'train[:4096]'
  config.evals.val.pp_fn = pp_eval
  config.evals.val.log_steps = 250

  base = {
      'type': 'proj.uvim.coco_panoptic',
      'pp_fn': pp_eval.replace('decode|', ''),
      'log_steps': 10_000,
      # Filters objects that occupy less than 0.03^2 fraction of all pixels.
      # 'predict_kwargs': {'min_fraction': 0.03 ** 2},
  }
  config.evals.coco_panoptic_train = dict(**base, split='train[4096:8192]')
  config.evals.coco_panoptic_holdout = dict(**base, split='train[:4096]')
  config.evals.coco_panoptic = dict(**base, split='validation')

  # config.evals.save_pred = dict(type='proj.uvim.save_predictions')
  # config.evals.save_pred.pp = pp_eval.replace('decode|', '')
  # config.evals.save_pred.log_steps = 100_000
  # config.evals.save_pred.dataset = config.dataset
  # config.evals.save_pred.split = 'validation[:1024]'
  # config.evals.save_pred.outfile = 'inference.npz'

  config.seed = 0

  if arg.singlehost:
    config.input.batch_size = 128
    config.num_epochs = 100
  elif arg.runlocal:
    config.input.batch_size = 16
    config.input.shuffle_buffer_size = 10
    config.log_training_steps = 5
    config.model.enc_depth = 1
    config.model.dec_depth = 1
    config.evals.val.data.split = 'validation[:16]'
    config.evals.val.log_steps = 20

  return config