File size: 4,553 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# Copyright 2022 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# pylint: disable=line-too-long
r"""A config for training a UViM stage I model for the depth task.
"""

import itertools
import big_vision.configs.common as bvcc
import ml_collections as mlc


QUANTIZATION_BINS = 256
# Depths outside of this range will not be evaluated.
MIN_DEPTH = 1e-3
MAX_DEPTH = 10


def get_config(arg='res=512,patch_size=16'):
  """Config for training label compression on NYU depth v2."""
  arg = bvcc.parse_arg(arg, res=512, patch_size=16,
                       runlocal=False, singlehost=False)
  config = mlc.ConfigDict()

  config.task = 'proj.uvim.depth_task'

  config.input = {}
  config.input.data = dict(name='nyu_depth_v2', split='train)

  config.input.batch_size = 1024
  config.input.shuffle_buffer_size = 25_000

  config.total_epochs = 200

  config.input.pp = (
      f'decode|nyu_depth|'
      f'randu("fliplr")|det_fliplr(key="image")|det_fliplr(key="labels")|'
      f'inception_box|crop_box(key="image")|crop_box(key="labels")|'
      f'resize({arg.res})|resize({arg.res},key="labels",method="nearest")|'
      f'value_range(-1, 1)|keep("image","labels")'
  )

  pp_eval = (
      f'decode|nyu_depth|nyu_eval_crop|'
      f'resize({arg.res})|resize({arg.res},key="labels",method="nearest")|'
      f'value_range(-1, 1)|keep("image","labels")'
  )

  # There are no image IDs in TFDS, so hand through the ground truth for eval.
  pp_pred = (
      f'nyu_depth|nyu_eval_crop|copy("labels","ground_truth")|'
      f'resize({arg.res})|resize({arg.res},key="labels",method="nearest")|'
      f'value_range(-1, 1)|'
      f'keep("image","labels","ground_truth")'
  )

  config.log_training_steps = 50
  config.ckpt_steps = 1000
  config.keep_ckpt_steps = 20_000

  # Model section
  config.min_depth = MIN_DEPTH
  config.max_depth = MAX_DEPTH
  config.model_name = 'proj.uvim.vit'
  config.model = mlc.ConfigDict()
  config.model.input_size = (arg.res, arg.res)
  config.model.patch_size = (arg.patch_size, arg.patch_size)
  config.model.code_len = 256
  config.model.width = 768
  config.model.enc_depth = 6
  config.model.dec_depth = 12
  config.model.mlp_dim = 3072
  config.model.num_heads = 12
  config.model.dict_size = 4096  # Number of words in dict.
  config.model.codeword_dim = 768
  config.model.dict_momentum = 0.995  # Momentum for dict. learning.
  config.model.with_encoder_ctx = True
  config.model.with_decoder_ctx = True
  config.model.code_dropout = 'random'
  config.model.bottleneck_resize = True
  config.model.inputs = {
      'depth': (QUANTIZATION_BINS, arg.patch_size**2),
  }
  config.model.outputs = config.model.inputs

  # VQVAE-specific params.
  config.freeze_dict = False  # Will freeze a dict. inside VQ-VAE model.
  config.w_commitment = 0.0

  # Optimizer section
  config.optax_name = 'big_vision.scale_by_adafactor'
  config.optax = dict(beta2_cap=0.95)

  config.lr = 1e-3
  config.wd = 1e-5
  config.schedule = dict(decay_type='cosine', warmup_steps=4_000)
  config.grad_clip_norm = 1.0

  # Evaluation section
  config.evals = {}
  config.evals.val = mlc.ConfigDict()
  config.evals.val.type = 'proj.uvim.compute_mean'
  config.evals.val.pred = 'validation'
  config.evals.val.data = {**config.input.data}
  config.evals.val.data.split = 'validation'
  config.evals.val.pp_fn = pp_eval
  config.evals.val.log_steps = 250

  base = {
      'type': 'proj.uvim.nyu_depth',
      'dataset': config.input.data.name,
      'pp_fn': pp_pred,
      'log_steps': 2000,
      'min_depth': MIN_DEPTH,
      'max_depth': MAX_DEPTH,
  }
  config.evals.nyu_depth_val = dict(**base, split='validation')

  config.seed = 0

  if arg.singlehost:
    config.input.batch_size = 128
    config.total_epochs = 50
  elif arg.runlocal:
    config.input.batch_size = 16
    config.input.shuffle_buffer_size = 10
    config.log_training_steps = 5
    config.model.enc_depth = 1
    config.model.dec_depth = 1
    config.evals.val.data.split = 'validation[:16]'
    config.evals.val.log_steps = 20

  return config