File size: 5,772 Bytes
74e8f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=line-too-long
r"""Generates COCO-35L in a TFDS-ready structure.
First, download the captions from https://google.github.io/crossmodal-3600/ and the images from https://cocodataset.org/#download.
The coco Karpathy split is available at http://cs.stanford.edu/people/karpathy/deepimagesent/caption_datasets.zip:
mkdir -p /tmp/data/coco35l/images
wget https://storage.googleapis.com/crossmodal-3600/coco_mt_train.jsonl.bz2 -P /tmp/data/coco35l
wget https://storage.googleapis.com/crossmodal-3600/coco_mt_dev.jsonl.bz2 -P /tmp/data/coco35l
bzip2 -dk /tmp/data/coco35l/coco_mt_train.jsonl.bz2 /tmp/data/coco35l/coco_mt_dev.jsonl.bz2
wget http://cs.stanford.edu/people/karpathy/deepimagesent/caption_datasets.zip -P /tmp/data/coco35l
unzip /tmp/data/coco35l/caption_datasets.zip -d /tmp/data/coco35l/
wget http://images.cocodataset.org/zips/train2014.zip -P /tmp/data/coco35l/images
wget http://images.cocodataset.org/zips/val2014.zip -P /tmp/data/coco35l/images
unzip /tmp/data/coco35l/images/train2014.zip -d /tmp/data/coco35l/images/
unzip /tmp/data/coco35l/images/val2014.zip -d /tmp/data/coco35l/images/
Then, run conversion locally (make sure to install tensorflow-datasets for the `tfds` util):
cd big_vision/datasets
env TFDS_DATA_DIR=/tmp/tfds tfds build --datasets=coco35l
Example to load:
import tensorflow_datasets as tfds
dataset = tfds.load(
'coco35l', split='dev_en',
data_dir='/tmp/tfds')
"""
import json
import os.path
import tensorflow_datasets as tfds
_DESCRIPTION = """
COCO image + captions, translated from English to 35 languages (English incl.).
"""
# pylint: disable=line-too-long
_CITATION = """
@inproceedings{thapliyal-etal-2022-crossmodal,
title = "Crossmodal-3600: A Massively Multilingual Multimodal Evaluation Dataset",
author = "Thapliyal, Ashish V. and
Pont Tuset, Jordi and
Chen, Xi and
Soricut, Radu",
editor = "Goldberg, Yoav and
Kozareva, Zornitsa and
Zhang, Yue",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-main.45",
doi = "10.18653/v1/2022.emnlp-main.45",
pages = "715--729",
}
"""
# pylint: enable=line-too-long
_CAPTIONS_PATH = '/tmp/data/coco35l'
_IMAGES_PATH = '/tmp/data/mscoco/images'
_COCOCAPS_PATH = '/tmp/data/mscoco/dataset_coco.json'
LANGUAGES = [
'ar', 'bn', 'cs', 'da', 'de', 'el', 'en', 'es', 'fa', 'fi', 'fil', 'fr',
'he', 'hi', 'hr', 'hu', 'id', 'it', 'ja', 'ko', 'mi', 'nl', 'no', 'pl',
'pt', 'ro', 'ru', 'sv', 'sw', 'te', 'th', 'tr', 'uk', 'vi', 'zh',
]
class Coco35l(tfds.core.GeneratorBasedBuilder):
"""DatasetBuilder for COCO-35L dataset."""
VERSION = tfds.core.Version('1.0.0')
RELEASE_NOTES = {'1.0.0': 'First release.'}
def _info(self):
"""Returns the metadata."""
return tfds.core.DatasetInfo(
builder=self,
description=_DESCRIPTION,
features=tfds.features.FeaturesDict({
'image/id': tfds.features.Text(),
'image': tfds.features.Image(encoding_format='jpeg'),
'captions': tfds.features.Sequence(tfds.features.Text()),
'language': tfds.features.Text(),
}),
supervised_keys=None,
homepage='https://google.github.io/crossmodal-3600/',
citation=_CITATION,
)
def _split_generators(self, dl_manager: tfds.download.DownloadManager):
"""Returns SplitGenerators."""
splits = []
for lang in LANGUAGES:
splits.extend([f'train_{lang}', f'dev_{lang}'])
return {split: self._generate_examples(split) for split in splits}
def _generate_examples(self, split: str):
"""Yields (key, example) tuples from dataset."""
split, language = split.split('_')
id_to_path = dict()
with open(_COCOCAPS_PATH, 'r') as f:
data = json.load(f)['images']
for d in data:
id_to_path[d['cocoid']] = os.path.join(
_IMAGES_PATH, d['filepath'], d['filename']
)
annot_fname = os.path.join(_CAPTIONS_PATH, f'coco_mt_{split}.jsonl')
data = {}
with open(annot_fname, 'r') as f:
for line in f:
j = json.loads(line)
image_id = f'{j["image_id"].split("_")[0]}_{language}'
if image_id not in data:
data[image_id] = []
if language == 'en':
# COCO-35L was constructed from English into 35 other languages.
# To add English in our TFDS, we just select a language (eg. "de") to
# have each unique example, and add the corresponding source caption.
if j['trg_lang'] == 'de':
data[image_id].append(j['caption_tokenized'])
else:
if j['trg_lang'] == language:
data[image_id].append(j['translation_tokenized'])
for image_id, captions in data.items():
yield image_id, {
'image/id': image_id,
'image': id_to_path[int(image_id.split('_')[0])],
'captions': captions,
'language': language,
}
|