File size: 5,695 Bytes
74e8f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=line-too-long
r"""Generates GQA in a TFDS-ready structure, using Beam.
Instructions below are to generate the dataset with a *local* Beam pipeline.
It's advisable to run the Beam job on Google Cloud Dataflow, see
https://www.tensorflow.org/datasets/beam_datasets.
for more details, which would significantly speed up generation. This would
involve uploading the locally downloaded data to a GCS bucket, and then
adding in the Beam pipeline options and your GCP/GCS bucket details
to the `tfds build` command below (as detailed in the link).
First, copy the data to local disk:
mkdir -p /tmp/data/gqa
wget -O /tmp/data/gqa/question1.2.zip https://downloads.cs.stanford.edu/nlp/data/gqa/questions1.2.zip?download=true
unzip /tmp/data/gqa/question1.2.zip
mv /tmp/data/gqa/question1.2/* /tmp/data/gqa/
wget -O /tmp/data/gqa/images.zip https://downloads.cs.stanford.edu/nlp/data/gqa/images.zip?download=true
unzip /tmp/data/gqa/images.zip
Then, run conversion (make sure to install tensorflow-datasets for the `tfds` util):
cd big_vision/datasets
env TFDS_DATA_DIR=/tmp/tfds tfds build --datasets=gqa
Example to load:
import tensorflow_datasets as tfds
dataset = tfds.load('gqa', split='testdev_balanced', data_dir='/tmp/tfds')
Some statistics:
train_all: 14305356 examples
train_balanced: 943000 examples
val_all: 2011853 examples
val_balanced: 132062 examples
testdev_all: 172174 examples
testdev_balanced: 12578 examples
"""
import glob
import json
import os
import numpy as np
import tensorflow_datasets as tfds
_DESCRIPTION = """GQA: Visual Reasoning in the Real World."""
# pylint: disable=line-too-long
_CITATION = """
@article{DBLP:journals/corr/abs-2306-14610,
author = {Drew Hudson and
Christopher Manning},
title = {GQA: A New Dataset for Real-World Visual Reasoning and Compositional Question Answering},
journal = {CVPR},
volume = {abs/1902.09506},
year = {2019},
url = {https://doi.org/10.48550/arXiv.1902.09506},
doi = {10.48550/arXiv.1902.09506},
eprinttype = {arXiv},
eprint = {1902.09506},
timestamp = {Tue, 25 Jun 2019 00:00:00 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1902-09506},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""
# pylint: enable=line-too-long
_DATA_PATH = '/tmp/data/gqa/'
class GQA(tfds.core.GeneratorBasedBuilder):
"""DatasetBuilder for GQA dataset."""
VERSION = tfds.core.Version('1.0.0')
RELEASE_NOTES = {'1.0.0': 'First release.'}
def _info(self):
"""Returns the metadata."""
return tfds.core.DatasetInfo(
builder=self,
description=_DESCRIPTION,
features=tfds.features.FeaturesDict({
'example_id': tfds.features.Scalar(np.int64),
'image/id': tfds.features.Text(),
'image': tfds.features.Image(encoding_format='jpeg'),
'question': tfds.features.Text(),
'answer': tfds.features.Text(),
'full_answer': tfds.features.Text(),
'is_balanced': tfds.features.Scalar(np.bool_),
}),
homepage='https://cs.stanford.edu/people/dorarad/gqa/',
citation=_CITATION,
)
def _split_generators(self, dl_manager: tfds.download.DownloadManager):
"""Returns SplitGenerators."""
splits = [
# 'debug',
'train_all',
'train_balanced',
'testdev_all',
'testdev_balanced',
'val_all',
'val_balanced',
'challenge_all',
'challenge_balanced',
]
return {split: self._generate_examples(split) for split in splits}
def _generate_examples(self, split: str):
"""Yields (key, example) tuples from dataset."""
if split == 'train_all':
train_json_dir = os.path.join(_DATA_PATH, 'train_all_questions', '*.json')
json_files = glob.glob(train_json_dir)
else:
json_files = [os.path.join(_DATA_PATH, f'{split}_questions.json')]
def _prepare_data(json_path):
with open(os.path.join(json_path)) as f:
annotations = json.load(f)
return [(k, v) for k, v in annotations.items()]
def _process_example(entry):
question_id, question_data = entry
image_id = question_data['imageId']
image_path = os.path.join(_DATA_PATH, 'images', f'{image_id}.jpg')
answer = question_data['answer'] if 'answer' in question_data else ''
if 'fullAnswer' in question_data:
full_answer = question_data['fullAnswer']
else:
full_answer = ''
example = {
'example_id': question_id,
'image/id': image_id,
'image': image_path,
'question': question_data['question'],
'answer': answer,
'full_answer': full_answer,
'is_balanced': question_data['isBalanced'],
}
return question_id, example
beam = tfds.core.lazy_imports.apache_beam
return (
beam.Create(json_files)
| beam.FlatMap(_prepare_data)
| beam.Reshuffle()
| beam.Map(_process_example)
)
|