File size: 5,695 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# pylint: disable=line-too-long
r"""Generates GQA in a TFDS-ready structure, using Beam.

Instructions below are to generate the dataset with a *local* Beam pipeline.
It's advisable to run the Beam job on Google Cloud Dataflow, see
  https://www.tensorflow.org/datasets/beam_datasets.
for more details, which would significantly speed up generation. This would
involve uploading the locally downloaded data to a GCS bucket, and then
adding in the Beam pipeline options and your GCP/GCS bucket details
to the `tfds build` command below (as detailed in the link).

First, copy the data to local disk:

  mkdir -p /tmp/data/gqa
  wget -O /tmp/data/gqa/question1.2.zip https://downloads.cs.stanford.edu/nlp/data/gqa/questions1.2.zip?download=true
  unzip /tmp/data/gqa/question1.2.zip
  mv /tmp/data/gqa/question1.2/* /tmp/data/gqa/
  wget -O /tmp/data/gqa/images.zip https://downloads.cs.stanford.edu/nlp/data/gqa/images.zip?download=true
  unzip /tmp/data/gqa/images.zip

Then, run conversion (make sure to install tensorflow-datasets for the `tfds` util):

  cd big_vision/datasets
  env TFDS_DATA_DIR=/tmp/tfds tfds build --datasets=gqa

Example to load:

  import tensorflow_datasets as tfds
  dataset = tfds.load('gqa', split='testdev_balanced', data_dir='/tmp/tfds')

Some statistics:
  train_all: 14305356 examples
  train_balanced: 943000 examples
  val_all: 2011853 examples
  val_balanced: 132062 examples
  testdev_all: 172174 examples
  testdev_balanced: 12578 examples
"""
import glob
import json
import os

import numpy as np
import tensorflow_datasets as tfds


_DESCRIPTION = """GQA: Visual Reasoning in the Real World."""

# pylint: disable=line-too-long
_CITATION = """
@article{DBLP:journals/corr/abs-2306-14610,
  author       = {Drew Hudson and
                  Christopher Manning},
  title        = {GQA: A New Dataset for Real-World Visual Reasoning and Compositional Question Answering},
  journal      = {CVPR},
  volume       = {abs/1902.09506},
  year         = {2019},
  url          = {https://doi.org/10.48550/arXiv.1902.09506},
  doi          = {10.48550/arXiv.1902.09506},
  eprinttype    = {arXiv},
  eprint       = {1902.09506},
  timestamp    = {Tue, 25 Jun 2019 00:00:00 +0100},
  biburl       = {https://dblp.org/rec/journals/corr/abs-1902-09506},
  bibsource    = {dblp computer science bibliography, https://dblp.org}
}
"""
# pylint: enable=line-too-long


_DATA_PATH = '/tmp/data/gqa/'


class GQA(tfds.core.GeneratorBasedBuilder):
  """DatasetBuilder for GQA dataset."""

  VERSION = tfds.core.Version('1.0.0')
  RELEASE_NOTES = {'1.0.0': 'First release.'}

  def _info(self):
    """Returns the metadata."""

    return tfds.core.DatasetInfo(
        builder=self,
        description=_DESCRIPTION,
        features=tfds.features.FeaturesDict({
            'example_id': tfds.features.Scalar(np.int64),
            'image/id': tfds.features.Text(),
            'image': tfds.features.Image(encoding_format='jpeg'),
            'question': tfds.features.Text(),
            'answer': tfds.features.Text(),
            'full_answer': tfds.features.Text(),
            'is_balanced': tfds.features.Scalar(np.bool_),
        }),
        homepage='https://cs.stanford.edu/people/dorarad/gqa/',
        citation=_CITATION,
    )

  def _split_generators(self, dl_manager: tfds.download.DownloadManager):
    """Returns SplitGenerators."""
    splits = [
        # 'debug',
        'train_all',
        'train_balanced',
        'testdev_all',
        'testdev_balanced',
        'val_all',
        'val_balanced',
        'challenge_all',
        'challenge_balanced',
    ]
    return {split: self._generate_examples(split) for split in splits}

  def _generate_examples(self, split: str):
    """Yields (key, example) tuples from dataset."""
    if split == 'train_all':
      train_json_dir = os.path.join(_DATA_PATH, 'train_all_questions', '*.json')
      json_files = glob.glob(train_json_dir)
    else:
      json_files = [os.path.join(_DATA_PATH, f'{split}_questions.json')]

    def _prepare_data(json_path):
      with open(os.path.join(json_path)) as f:
        annotations = json.load(f)
      return [(k, v) for k, v in annotations.items()]

    def _process_example(entry):
      question_id, question_data = entry
      image_id = question_data['imageId']
      image_path = os.path.join(_DATA_PATH, 'images', f'{image_id}.jpg')
      answer = question_data['answer'] if 'answer' in question_data else ''
      if 'fullAnswer' in question_data:
        full_answer = question_data['fullAnswer']
      else:
        full_answer = ''

      example = {
          'example_id': question_id,
          'image/id': image_id,
          'image': image_path,
          'question': question_data['question'],
          'answer': answer,
          'full_answer': full_answer,
          'is_balanced': question_data['isBalanced'],
      }
      return question_id, example

    beam = tfds.core.lazy_imports.apache_beam
    return (
        beam.Create(json_files)
        | beam.FlatMap(_prepare_data)
        | beam.Reshuffle()
        | beam.Map(_process_example)
    )