File size: 16,577 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# pylint: disable=line-too-long
r"""Unbatch RefCOCO, RefCOCO+, RefCOCOg datasets in TFDS structure."""

# Based on tensorflow_datasets/datasets/ref_coco

import io
import os
import pickle

import numpy as np
import PIL.Image
import pycocotools.coco
import tensorflow_datasets as tfds

_ROOT_PATH = '/tmp/data/'


class RefCocoConfig(tfds.core.BuilderConfig):
  """Config to specify each RefCoco variant."""

  def __init__(self, dataset, dataset_partition, **kwargs):
    name = f'{dataset}_{dataset_partition}'
    super(RefCocoConfig, self).__init__(name=name, **kwargs)
    self.dataset = dataset
    self.dataset_partition = dataset_partition


_DESCRIPTION = """RefCOCO, RefCOCO+, RefCOCOg datasets.

Images, boxes and segmentations are from the original COCO dataset
(Lin et al, ECCV 2014). The referential segmentations are from two different
sources:

1) RefCOCOg (Mao et al, CVPR 2016):
  - https://github.com/mjhucla/Google_Refexp_toolbox
  - This is the split used in the "refcocog_google" dataset. Note that this
    split has overlapping images in train/validation. The same split is also
    provided in 2).

2) Source of RefCOCO and RefCOCO+ (Yu et al, ECCV 2016):
  - https://github.com/lichengunc/refer
  - Apache License 2.0
  - Provides all the splits used for generation of these datasets, including the
    "refcocog_google" split that is identical with the split from 1).

For convenience, we provide an additional dataset "refcocox_combined" that
combines the datasets "refcoco_unc", "refcocoplus_unc", and "refcocog_umd",
unifying "testA" and "testB" into a single "test" split, and removing any images
from "train" that appear either in "validation" or "test".

Also for convenience, every split is unrolled twice (at the "objects" level and
at the "object/refs" level) and saved as "{split}_flat".
"""

# pylint: disable=line-too-long
_CITATION = r"""
@inproceedings{DBLP:conf/cvpr/MaoHTCY016,
  author       = {Junhua Mao and
                  Jonathan Huang and
                  Alexander Toshev and
                  Oana Camburu and
                  Alan L. Yuille and
                  Kevin Murphy},
  title        = {Generation and Comprehension of Unambiguous Object Descriptions},
  booktitle    = {2016 {IEEE} Conference on Computer Vision and Pattern Recognition,
                  {CVPR} 2016, Las Vegas, NV, USA, June 27-30, 2016},
  pages        = {11--20},
  publisher    = {{IEEE} Computer Society},
  year         = {2016},
  url          = {https://doi.org/10.1109/CVPR.2016.9},
  doi          = {10.1109/CVPR.2016.9},
  timestamp    = {Fri, 24 Mar 2023 00:02:52 +0100},
  biburl       = {https://dblp.org/rec/conf/cvpr/MaoHTCY016.bib},
  bibsource    = {dblp computer science bibliography, https://dblp.org}
}

@inproceedings{DBLP:conf/eccv/YuPYBB16,
  author       = {Licheng Yu and
                  Patrick Poirson and
                  Shan Yang and
                  Alexander C. Berg and
                  Tamara L. Berg},
  editor       = {Bastian Leibe and
                  Jiri Matas and
                  Nicu Sebe and
                  Max Welling},
  title        = {Modeling Context in Referring Expressions},
  booktitle    = {Computer Vision - {ECCV} 2016 - 14th European Conference, Amsterdam,
                  The Netherlands, October 11-14, 2016, Proceedings, Part {II}},
  series       = {Lecture Notes in Computer Science},
  volume       = {9906},
  pages        = {69--85},
  publisher    = {Springer},
  year         = {2016},
  url          = {https://doi.org/10.1007/978-3-319-46475-6\_5},
  doi          = {10.1007/978-3-319-46475-6\_5},
  timestamp    = {Wed, 07 Dec 2022 23:10:23 +0100},
  biburl       = {https://dblp.org/rec/conf/eccv/YuPYBB16.bib},
  bibsource    = {dblp computer science bibliography, https://dblp.org}
}

@article{DBLP:journals/corr/LinMBHPRDZ14,
  author    = {Tsung{-}Yi Lin and
               Michael Maire and
               Serge J. Belongie and
               Lubomir D. Bourdev and
               Ross B. Girshick and
               James Hays and
               Pietro Perona and
               Deva Ramanan and
               Piotr Doll{\'{a}}r and
               C. Lawrence Zitnick},
  title     = {Microsoft {COCO:} Common Objects in Context},
  journal   = {CoRR},
  volume    = {abs/1405.0312},
  year      = {2014},
  url       = {http://arxiv.org/abs/1405.0312},
  archivePrefix = {arXiv},
  eprint    = {1405.0312},
  timestamp = {Mon, 13 Aug 2018 16:48:13 +0200},
  biburl    = {https://dblp.org/rec/bib/journals/corr/LinMBHPRDZ14},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""

# coco_data = json.load(open('annotations/instances_train2017.json'))
# [l['name'] for l in coco_data['licenses']]
LICENSES = [
    'Attribution-NonCommercial-ShareAlike License',
    'Attribution-NonCommercial License',
    'Attribution-NonCommercial-NoDerivs License',
    'Attribution License',
    'Attribution-ShareAlike License',
    'Attribution-NoDerivs License',
    'No known copyright restrictions',
    'United States Government Work',
]
# _licenses_map = {l['id']: i for i, l in enumerate(coco_data['licenses'])}
_licenses_map = {1: 0, 2: 1, 3: 2, 4: 3, 5: 4, 6: 5, 7: 6, 8: 7}

# pyformat: disable
# [c['name'] for c in coco_data['categories']]
CATEGORIES = [
    'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train',
    'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign',
    'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
    'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag',
    'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite',
    'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
    'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon',
    'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot',
    'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant',
    'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
    'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink',
    'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
    'hair drier', 'toothbrush',
]
# sorted(set(c['supercategory'] for c in coco_data['categories']))
SUPERCATEGORIES = [
    'accessory', 'animal', 'appliance', 'electronic', 'food', 'furniture',
    'indoor', 'kitchen', 'outdoor', 'person', 'sports', 'vehicle',
]
# pyformat: enable


# Will be exported into directory `$TFDS_DATA_DIR/ref_coco_bv`
# If the class name was `RefCOCO` then it would be exported into
# `$TFDS_DATA_DIR/ref_coco`, which would collide with the default TFDS dataset
# also named `ref_coco` (which has precedence over `data_dir` builder arg).
class RefCocoBv(tfds.core.GeneratorBasedBuilder):
  """DatasetBuilder for RefCoco datasets."""

  VERSION = tfds.core.Version('1.4.0')
  RELEASE_NOTES = {
      '1.4.0': 'Added flat versions of all dataset splits.',
      '1.3.0': 'Added "refcocox_combined" dataset.',
      '1.2.0': 'Added "train_flat" splits.',
      '1.1.0': 'Added more features (mask etc), nested "refs" in "objects".',
      '1.0.0': 'Initial release.',
  }

  MANUAL_DOWNLOAD_INSTRUCTIONS = """
  1. Install https://pypi.org/project/pycocotools/.

  2. Download data (requires ~20G for COCO images):

        (mkdir -p /tmp/tfds/downloads/manual &&
        cd /tmp/tfds/downloads/manual &&
        wget http://images.cocodataset.org/zips/train2017.zip &&
        wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip &&
        wget https://bvisionweb1.cs.unc.edu/licheng/referit/data/refcoco.zip &&
        wget https://bvisionweb1.cs.unc.edu/licheng/referit/data/refcoco+.zip &&
        wget https://bvisionweb1.cs.unc.edu/licheng/referit/data/refcocog.zip &&
        for zip in *.zip; do unzip $zip; done
        )

  3. Run the generation script with `TFDS_DATA_DIR=/tmp/tfds`
  """

  BUILDER_CONFIGS = [
      RefCocoConfig(dataset='refcoco', dataset_partition='unc'),
      RefCocoConfig(dataset='refcoco', dataset_partition='google'),
      RefCocoConfig(dataset='refcocoplus', dataset_partition='unc'),
      RefCocoConfig(dataset='refcocog', dataset_partition='google'),
      RefCocoConfig(dataset='refcocog', dataset_partition='umd'),
      RefCocoConfig(dataset='refcocox', dataset_partition='combined'),
  ]

  def _info(self) -> tfds.core.DatasetInfo:
    return tfds.core.DatasetInfo(
        builder=self,
        features=tfds.features.FeaturesDict({
            'id': tfds.features.Scalar(np.int32),
            'image': tfds.features.Image(encoding_format='jpeg'),
            'height': tfds.features.Scalar(np.int32),
            'width': tfds.features.Scalar(np.int32),
            'license': tfds.features.ClassLabel(names=LICENSES),
            'file_name': tfds.features.Text(),
            'flickr_url': tfds.features.Text(),
            'coco_url': tfds.features.Text(),
            'objects': tfds.features.Sequence({
                'id': tfds.features.Scalar(np.int64),
                'area': tfds.features.Scalar(np.float32),
                'bbox': tfds.features.BBoxFeature(),
                'mask': tfds.features.Image(encoding_format='png'),
                'category': tfds.features.ClassLabel(names=CATEGORIES),
                'supercategory': tfds.features.ClassLabel(
                    names=SUPERCATEGORIES
                ),
                'iscrowd': tfds.features.Scalar(np.bool_),
                # refcoco, refcoco+, refcocog features:
                'refs': tfds.features.Sequence({
                    'id': tfds.features.Scalar(np.int32),
                    'sentence': tfds.features.Text(),
                }),
            }),
        }),
        supervised_keys=None,  # Set to `None` to disable
        citation=_CITATION,
        description=_DESCRIPTION,
    )

  def _split_generators(self, dl_manager: tfds.download.DownloadManager):
    allowed_splits = {
        ('refcoco', 'google'): [
            tfds.Split.TRAIN,
            tfds.Split.VALIDATION,
            tfds.Split.TEST,
        ],
        ('refcoco', 'unc'): [
            tfds.Split.TRAIN,
            tfds.Split.VALIDATION,
            'testA',
            'testB',
        ],
        ('refcocoplus', 'unc'): [
            tfds.Split.TRAIN,
            tfds.Split.VALIDATION,
            'testA',
            'testB',
        ],
        # Verified manually that image and annotation IDs match the ones in
        # https://storage.googleapis.com/refexp/google_refexp_dataset_release.zip
        ('refcocog', 'google'): [
            tfds.Split.TRAIN,
            tfds.Split.VALIDATION,
        ],
        ('refcocog', 'umd'): [
            tfds.Split.TRAIN,
            tfds.Split.VALIDATION,
            tfds.Split.TEST,
        ],
        ('refcocox', 'combined'): [
            tfds.Split.TRAIN,
            tfds.Split.VALIDATION,
            tfds.Split.TEST,
        ],
    }
    bc = self.builder_config
    splits = allowed_splits[(bc.dataset, bc.dataset_partition)]

    data_dir = dl_manager.manual_dir
    for url, components in (
        # pylint: disable=line-too-long
        # pyformat: disable
        ('http://images.cocodataset.org/zips/train2017.zip', ('train2017', '000000147328.jpg')),
        ('http://images.cocodataset.org/annotations/annotations_trainval2017.zip', ('annotations', 'instances_train2017.json')),
        ('https://bvisionweb1.cs.unc.edu/licheng/referit/data/refcoco.zip', ('refcoco', 'refs(unc).p')),
        ('https://bvisionweb1.cs.unc.edu/licheng/referit/data/refcoco+.zip', ('refcoco+', 'refs(unc).p')),
        ('https://bvisionweb1.cs.unc.edu/licheng/referit/data/refcocog.zip', ('refcocog', 'refs(umd).p')),
        # pyformat: enable
        # pylint: enable=line-too-long
    ):
      path = os.path.exists(os.path.join(data_dir, *components))
      if not path:
        raise FileNotFoundError(
            f'Could not find {path}: please download {url} and unzip into'
            f' {data_dir}'
        )

    coco = pycocotools.coco.COCO(
        os.path.join(data_dir, 'annotations', 'instances_train2017.json')
    )

    return {
        split + suffix: self._generate_examples(
            coco, data_dir, bc.dataset, bc.dataset_partition, split + suffix,
        )
        for split in splits
        for suffix in ('', '_flat')
    }

  # Builder must overwrite all abstract methods.
  def _generate_examples(
      self, coco, data_dir, dataset, dataset_partition, split):
    return _generate_examples(coco, data_dir, dataset, dataset_partition, split)


def _get_ids(data_dir, dataset, dataset_partition, split):
  """Returns `img_ids, ann_to_refs` for specified dataset/partition/split."""

  def load(dataset, dataset_partition):
    fname = f'refs({dataset_partition}).p'
    path = os.path.join(data_dir, dataset, fname)
    refcoco = pickle.load(open(path, 'rb'))
    return refcoco

  if split == tfds.Split.VALIDATION:
    split = 'val'

  if (dataset, dataset_partition) == ('refcocox', 'combined'):
    refcoco = (
        load('refcocog', 'umd')
        + load('refcoco', 'unc')
        + load('refcoco+', 'unc')
    )
    if split == 'test':
      splits = ('test', 'testA', 'testB')
    else:
      splits = (split,)

    exclude_img_ids = set()
    if split == 'train':
      # Exclude all images with val/test annotations from train set.
      exclude_img_ids = {
          r['image_id'] for r in refcoco if r['split'] != 'train'
      }
    refcoco = [
        r
        for r in refcoco
        if r['split'] in splits and r['image_id'] not in exclude_img_ids
    ]

  else:
    if dataset == 'refcocoplus':
      dataset = 'refcoco+'
    refcoco = load(dataset, dataset_partition)
    refcoco = [r for r in refcoco if r['split'] == split]

  img_ids = {r['image_id'] for r in refcoco}
  ann_to_refs = {}
  for r in refcoco:
    for sent in r['sentences']:
      ann_to_refs.setdefault(r['ann_id'], []).append(dict(
          id=sent['sent_id'],
          sentence=sent['sent']
      ))

  return img_ids, ann_to_refs


def _generate_examples(coco, data_dir, dataset, dataset_partition, split):
  """Generates examples for a given split."""

  flat = '_flat' in split
  split = split.replace('_flat', '')
  img_ids, ann_to_refs = _get_ids(data_dir, dataset, dataset_partition, split)

  for img_id in coco.getImgIds():

    if img_id not in img_ids:
      continue
    img, = coco.loadImgs([img_id])

    example = {
        'id': img_id,
        'image': os.path.join(data_dir, 'train2017', img['file_name']),
        'height': img['height'],
        'width': img['width'],
        'license': LICENSES[_licenses_map[img['license']]],
        'file_name': img['file_name'],
        'flickr_url': img['flickr_url'],
        'coco_url': img['coco_url'],
        'objects': [],
    }
    for ann in coco.loadAnns(coco.getAnnIds(img_id)):
      refs = ann_to_refs.get(ann['id'])
      if not refs:
        continue
      cat, = coco.loadCats([ann['category_id']])
      mask = coco.annToMask(ann).astype(np.bool_)
      mask_buf = io.BytesIO()
      PIL.Image.fromarray(mask).save(mask_buf, 'png')
      mask_buf.seek(0)
      object_ = {
          'id': ann['id'],
          'mask': mask_buf,
          'category': cat['name'],
          'supercategory': cat['supercategory'],
          'iscrowd': ann['iscrowd'],
          'area': ann['area'],
          'bbox': _convert_bbox(img, *ann['bbox']),
          'refs': refs,
      }
      if flat:
        example['objects'] = [object_]
        for ref_i, ref in enumerate(refs):
          object_['refs'] = [ref]
          mask_buf.seek(0)
          yield f'{img_id}_{ann["id"]}_{ref_i}', example
      else:
        example['objects'].append(object_)

    if not flat:
      yield img_id, example


def _convert_bbox(img, x, y, w, h):
  return tfds.features.BBox(
      ymin=y / img['height'],
      xmin=x / img['width'],
      ymax=(y + h) / img['height'],
      xmax=(x + w) / img['width'],
  )