File size: 7,737 Bytes
74e8f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Packed Sequence Op."""
# Forked from
# https://github.com/google/maxtext/blob/main/MaxText/sequence_packing.py.
from typing import Dict, Optional, List, Union
import tensorflow as tf
AUTOTUNE = tf.data.experimental.AUTOTUNE
def pack_dataset(dataset: tf.data.Dataset,
key2length: Union[int, Dict[str, int]],
keys: Optional[List[str]] = None) -> tf.data.Dataset:
"""Creates a 'packed' version of a dataset on-the-fly.
Adapted from the mesh-tf implementation.
This is meant to replace the irritation of having to create a separate
"packed" version of a dataset to train efficiently on TPU.
Each example in the output dataset represents several examples in the
input dataset.
For each key in the input dataset, two additional keys are created:
<key>_seg: an int32 tensor identifying the parts
representing the original example.
<key>_pos: an int32 tensor identifying the position within the original
example.
Example:
Two input examples get combined to form an output example.
The input examples are:
{"inputs": [8, 7, 1, 0], "targets":[4, 1, 0]}
{"inputs": [2, 3, 4, 1], "targets":[5, 6, 1]}
The output example is:
{
"inputs": [8, 7, 1, 2, 3, 4, 1, 0, 0, 0]
"inputs_seg": [1, 1, 1, 2, 2, 2, 2, 0, 0, 0]
"inputs_pos": [0, 1, 2, 0, 1, 2, 3, 0, 0, 0]
"targets": [4, 1, 5, 6, 1, 0, 0, 0, 0, 0]
"targets_seg": [1, 1, 2, 2, 2, 0, 0, 0, 0, 0]
"targets_pos": [0, 1, 0, 1, 2, 0, 0, 0, 0, 0]
}
0 represents padding in both the inputs and the outputs.
Sequences in the incoming examples are truncated to length "length", and the
sequences in the output examples all have fixed (padded) length "length".
Args:
dataset: a tf.data.Dataset
key2length: an integer, or a dict from feature-key to integer
keys: a list of strings (e.g. ["inputs", "targets"])
Returns:
a tf.data.Dataset
"""
shapes = tf.nest.map_structure(lambda spec: spec.shape, dataset.element_spec)
if keys is None:
keys = list(shapes.keys())
for k in keys:
if k not in shapes:
raise ValueError(f"""Key {k} not found in dataset. Available keys are
{shapes.keys()}""")
if not shapes[k].is_compatible_with(tf.TensorShape([None])):
raise ValueError('Tensors to be packed must be one-dimensional.')
# make sure that the length dictionary contains all keys as well as the
# keys suffixed by "_seg" and "_pos"
if isinstance(key2length, int):
key2length = {k: key2length for k in keys}
else:
key2length = dict(key2length) # Make new dict, we'll edit in-place.
for k in keys:
for suffix in ['_seg', '_pos']:
key2length[k + suffix] = key2length[k]
# trim to length
dataset = dataset.map(
lambda x: {k: x[k][:key2length[k]] for k in keys},
num_parallel_calls=AUTOTUNE)
# Setting batch_size=length ensures that the concatenated sequences (if they
# have length >=1) are sufficient to fill at least one packed example.
batch_size = max(key2length.values())
dataset = dataset.padded_batch(
batch_size, padded_shapes={k: [-1] for k in keys})
dataset = _pack_with_tf_ops(dataset, keys, key2length)
# Set the Tensor shapes correctly since they get lost in the process.
def my_fn(x):
return {k: tf.reshape(v, [key2length[k]]) for k, v in x.items()}
return dataset.map(my_fn, num_parallel_calls=AUTOTUNE)
def _pack_with_tf_ops(dataset: tf.data.Dataset, keys: List[str],
key2length: Dict[str, int]) -> tf.data.Dataset:
"""Helper-function for packing a dataset which has already been batched.
Helper for pack_dataset() Uses tf.while_loop.
Args:
dataset: a dataset containing padded batches of examples.
keys: a list of strings
key2length: an dict from feature-key to integer
Returns:
a dataset.
"""
empty_example = {}
for k in keys:
empty_example[k] = tf.zeros([0], dtype=tf.int32)
empty_example[k + '_pos'] = tf.zeros([0], dtype=tf.int32)
keys_etc = empty_example.keys()
def write_packed_example(partial, outputs):
new_partial = empty_example.copy()
new_outputs = {}
for k in keys_etc:
new_outputs[k] = outputs[k].write(
outputs[k].size(),
tf.pad(partial[k], [[0, key2length[k] - tf.size(partial[k])]]))
return new_partial, new_outputs
def map_fn(x):
"""Internal function to flat_map over.
Consumes a batch of input examples and produces a variable number of output
examples.
Args:
x: a single example
Returns:
a tf.data.Dataset
"""
partial = empty_example.copy()
i = tf.zeros([], dtype=tf.int32)
dynamic_batch_size = tf.shape(x[keys[0]])[0]
outputs = {}
for k in keys:
outputs[k] = tf.TensorArray(
tf.int32, size=0, dynamic_size=True, element_shape=[key2length[k]])
outputs[k + '_pos'] = tf.TensorArray(
tf.int32, size=0, dynamic_size=True, element_shape=[key2length[k]])
def body_fn(i, partial, outputs):
"""Body function for while_loop.
Args:
i: integer scalar
partial: dictionary of Tensor (partially-constructed example)
outputs: dictionary of TensorArray
Returns:
A triple containing the new values of the inputs.
"""
can_append = True
one_example = {}
for k in keys:
val = tf.cast(x[k][i], tf.int32)
val = val[:tf.reduce_sum(tf.cast(tf.not_equal(val, 0), tf.int32))]
one_example[k] = val
for k in keys:
can_append = tf.logical_and(
can_append,
tf.less_equal(
tf.size(partial[k]) + tf.size(one_example[k]), key2length[k]))
def false_fn():
return write_packed_example(partial, outputs)
def true_fn():
return partial, outputs
partial, outputs = tf.cond(can_append, true_fn, false_fn)
new_partial = {}
for k in keys:
new_seq = one_example[k][:key2length[k]]
new_seq_len = tf.size(new_seq)
new_partial[k] = tf.concat([partial[k], new_seq], 0)
new_partial[k + '_pos'] = tf.concat(
[partial[k + '_pos'],
tf.range(new_seq_len)], 0)
partial = new_partial
return i + 1, partial, outputs
# For loop over all examples in the batch.
i, partial, outputs = tf.while_loop(
cond=lambda *_: True,
body=body_fn,
loop_vars=(i, partial, outputs),
shape_invariants=(
tf.TensorShape([]),
{k: tf.TensorShape([None]) for k in keys_etc},
{k: tf.TensorShape(None) for k in keys_etc},
),
maximum_iterations=dynamic_batch_size)
_, outputs = write_packed_example(partial, outputs)
packed = {k: outputs[k].stack() for k in keys_etc}
for k in keys:
packed[k + '_seg'] = (
tf.cumsum(
tf.cast(tf.equal(packed[k + '_pos'], 0), tf.int32), axis=1) *
tf.cast(tf.not_equal(packed[k], 0), tf.int32))
return packed
dataset = dataset.map(map_fn, num_parallel_calls=AUTOTUNE)
return dataset.unbatch()
|