File size: 4,677 Bytes
74e8f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=line-too-long
r"""Implements ST-VQA dataset in TFDS.
It's small data, so simple to run locally.
First, download and unzip the dataset from https://rrc.cvc.uab.es/?ch=11
and place it in /tmp/data/stvqa.
Then, run conversion locally (make sure to install tensorflow-datasets for the `tfds` util):
cd third_party/py/big_vision/datasets
env TFDS_DATA_DIR=/tmp/tfds tfds build --datasets=stvqa
Example to load:
import tensorflow_datasets as tfds
dataset = tfds.load('stvqa', split='train', data_dir='/tmp/tfds')
Dataset splits:
train: 23446 examples/questions (subset of original train)
val: 2628 examples/questions (subset of original train)
test: 4070 examples/questions (no answers)
Note: original source data has no val/holdout split, and we therefore split the
original train split (26074 examples/questions) by ourselves into train & val
splits.
Recommended training splits:
train: train
minitrain: train[:5%]
eval: val
fulltrain: train+val
"""
import json
import os
from big_vision.datasets.stvqa import val_ids
import numpy as np
import tensorflow_datasets as tfds
_VAL_IDS = val_ids.PSEUDO_VAL_IMAGE_PATHS
_DESCRIPTION = """ST-VQA dataset."""
# pylint: disable=line-too-long
_CITATION = """
@inproceedings{Biten_2019,
title={Scene Text Visual Question Answering},
url={http://dx.doi.org/10.1109/ICCV.2019.00439},
DOI={10.1109/iccv.2019.00439},
booktitle={2019 IEEE/CVF International Conference on Computer Vision (ICCV)},
publisher={IEEE},
author={Biten, Ali Furkan and Tito, Ruben and Mafla, Andres and Gomez, Lluis and Rusinol, Marcal and Jawahar, C.V. and Valveny, Ernest and Karatzas, Dimosthenis},
year={2019},
month=oct }
"""
# pylint: enable=line-too-long
# When running locally (recommended), copy files as above an use these:
_STVQA_PATH = '/tmp/data/stvqa/'
class Stvqa(tfds.core.GeneratorBasedBuilder):
"""DatasetBuilder for ST-VQA dataset."""
VERSION = tfds.core.Version('1.2.0')
RELEASE_NOTES = {
'1.0.0': 'First release.',
'1.1.0': 'Switch to COCO high-res images and lower-case answers.',
'1.2.0': 'Rename pseudo splits and remove lower-case answers.',
}
def _info(self):
"""Returns the metadata."""
return tfds.core.DatasetInfo(
builder=self,
description=_DESCRIPTION,
features=tfds.features.FeaturesDict({
'question_id': tfds.features.Scalar(np.int32),
'filename': tfds.features.Text(),
'image': tfds.features.Image(encoding_format='jpeg'),
'question': tfds.features.Text(),
'answers': tfds.features.Sequence(tfds.features.Text()),
}),
supervised_keys=None,
homepage='https://rrc.cvc.uab.es/?ch=11',
citation=_CITATION,
)
def _split_generators(self, dl_manager: tfds.download.DownloadManager):
"""Returns SplitGenerators."""
return {split: self._generate_examples(split)
for split in ('train', 'val', 'test')}
def _generate_examples(self, split):
"""Yields (key, example) tuples."""
src_split = 'test' if split == 'test' else 'train'
annot_fname = os.path.join(_STVQA_PATH, f'{src_split}_task_3.json')
images_path = f'{src_split}{"_task3" if src_split == "test" else ""}_images'
with open(annot_fname, 'r') as f:
data = json.loads(f.read())
for x in data['data']:
if split == 'val' and x['file_path'] not in _VAL_IDS:
continue
elif split == 'train' and x['file_path'] in _VAL_IDS:
continue
image_path = os.path.join(_STVQA_PATH, images_path, x['file_path'])
# Always use high-res COCO images from train2014 directory.
if x['file_path'].startswith('coco-text'):
image_path = image_path.replace(os.path.join(images_path, 'coco-text'),
'train2014')
yield x['question_id'], {
'question_id': x['question_id'],
'filename': x['file_path'],
'image': image_path,
'question': x['question'],
'answers': x.get('answers', []),
}
|