File size: 4,677 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# pylint: disable=line-too-long
r"""Implements ST-VQA dataset in TFDS.

It's small data, so simple to run locally.
First, download and unzip the dataset from https://rrc.cvc.uab.es/?ch=11
and place it in /tmp/data/stvqa.

Then, run conversion locally (make sure to install tensorflow-datasets for the `tfds` util):

  cd third_party/py/big_vision/datasets
  env TFDS_DATA_DIR=/tmp/tfds tfds build --datasets=stvqa

Example to load:

  import tensorflow_datasets as tfds
  dataset = tfds.load('stvqa', split='train', data_dir='/tmp/tfds')

Dataset splits:
  train: 23446 examples/questions (subset of original train)
  val: 2628 examples/questions (subset of original train)
  test: 4070 examples/questions (no answers)

Note: original source data has no val/holdout split, and we therefore split the
original train split (26074 examples/questions) by ourselves into train & val
splits.

Recommended training splits:
  train: train
  minitrain: train[:5%]
  eval: val
  fulltrain: train+val
"""
import json
import os

from big_vision.datasets.stvqa import val_ids
import numpy as np
import tensorflow_datasets as tfds

_VAL_IDS = val_ids.PSEUDO_VAL_IMAGE_PATHS

_DESCRIPTION = """ST-VQA dataset."""

# pylint: disable=line-too-long
_CITATION = """
@inproceedings{Biten_2019,
   title={Scene Text Visual Question Answering},
   url={http://dx.doi.org/10.1109/ICCV.2019.00439},
   DOI={10.1109/iccv.2019.00439},
   booktitle={2019 IEEE/CVF International Conference on Computer Vision (ICCV)},
   publisher={IEEE},
   author={Biten, Ali Furkan and Tito, Ruben and Mafla, Andres and Gomez, Lluis and Rusinol, Marcal and Jawahar, C.V. and Valveny, Ernest and Karatzas, Dimosthenis},
   year={2019},
   month=oct }
"""
# pylint: enable=line-too-long

# When running locally (recommended), copy files as above an use these:
_STVQA_PATH = '/tmp/data/stvqa/'


class Stvqa(tfds.core.GeneratorBasedBuilder):
  """DatasetBuilder for ST-VQA dataset."""

  VERSION = tfds.core.Version('1.2.0')
  RELEASE_NOTES = {
      '1.0.0': 'First release.',
      '1.1.0': 'Switch to COCO high-res images and lower-case answers.',
      '1.2.0': 'Rename pseudo splits and remove lower-case answers.',
      }

  def _info(self):
    """Returns the metadata."""

    return tfds.core.DatasetInfo(
        builder=self,
        description=_DESCRIPTION,
        features=tfds.features.FeaturesDict({
            'question_id': tfds.features.Scalar(np.int32),
            'filename': tfds.features.Text(),
            'image': tfds.features.Image(encoding_format='jpeg'),
            'question': tfds.features.Text(),
            'answers': tfds.features.Sequence(tfds.features.Text()),
        }),
        supervised_keys=None,
        homepage='https://rrc.cvc.uab.es/?ch=11',
        citation=_CITATION,
    )

  def _split_generators(self, dl_manager: tfds.download.DownloadManager):
    """Returns SplitGenerators."""
    return {split: self._generate_examples(split)
            for split in ('train', 'val', 'test')}

  def _generate_examples(self, split):
    """Yields (key, example) tuples."""
    src_split = 'test' if split == 'test' else 'train'
    annot_fname = os.path.join(_STVQA_PATH, f'{src_split}_task_3.json')
    images_path = f'{src_split}{"_task3" if src_split == "test" else ""}_images'

    with open(annot_fname, 'r') as f:
      data = json.loads(f.read())

    for x in data['data']:
      if split == 'val' and x['file_path'] not in _VAL_IDS:
        continue
      elif split == 'train' and x['file_path'] in _VAL_IDS:
        continue
      image_path = os.path.join(_STVQA_PATH, images_path, x['file_path'])
      # Always use high-res COCO images from train2014 directory.
      if x['file_path'].startswith('coco-text'):
        image_path = image_path.replace(os.path.join(images_path, 'coco-text'),
                                        'train2014')
      yield x['question_id'], {
          'question_id': x['question_id'],
          'filename': x['file_path'],
          'image': image_path,
          'question': x['question'],
          'answers': x.get('answers', []),
      }