File size: 4,416 Bytes
74e8f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=line-too-long
r"""Implements VizWizVQA dataset in TFDS structure.
It's small data, so simple to run locally. First, copy the data to local disk:
mkdir -p /tmp/data/vizwizvqa
wget -O https://vizwiz.cs.colorado.edu/VizWiz_final/images/train.zip /tmp/data/vizwizvqa
wget -O https://vizwiz.cs.colorado.edu/VizWiz_final/images/val.zip /tmp/data/vizwizvqa
wget -O https://vizwiz.cs.colorado.edu/VizWiz_final/images/test.zip /tmp/data/vizwizvqa
Then, run conversion locally
(make sure to install tensorflow-datasets for the `tfds` util):
cd big_vision/datasets
env TFDS_DATA_DIR=/tmp/tfds tfds build --datasets=vizwizvqa
Example to load:
import tensorflow_datasets as tfds
dataset = tfds.load('vizwizvqa', split='train', data_dir='/tmp/tfds')
"""
import json
import os
import numpy as np
import tensorflow_datasets as tfds
_DESCRIPTION = """VizWiz VQA Dataset."""
# pylint: disable=line-too-long
_CITATION = """
@inproceedings{gurari2018vizwiz,
title={Vizwiz grand challenge: Answering visual questions from blind people},
author={Gurari, Danna and Li, Qing and Stangl, Abigale J and Guo, Anhong and Lin, Chi and Grauman, Kristen and Luo, Jiebo and Bigham, Jeffrey P},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={3608--3617},
year={2018}
}
}
"""
# pylint: enable=line-too-long
# When running locally (recommended), copy files as above an use these:
_VIZWIZVQA_PATH = '/tmp/data/vizwizvqa/'
class VizWizVQA(tfds.core.GeneratorBasedBuilder):
"""DatasetBuilder for VizWizVQA dataset."""
VERSION = tfds.core.Version('1.0.0')
RELEASE_NOTES = {'1.0.0': 'First release.'}
def _info(self):
"""Returns the metadata."""
return tfds.core.DatasetInfo(
builder=self,
description=_DESCRIPTION,
features=tfds.features.FeaturesDict({
'question': tfds.features.Text(),
'image/filename': tfds.features.Text(),
'image': tfds.features.Image(encoding_format='jpeg'),
'answers': tfds.features.Sequence(tfds.features.Text()),
# can be "yes" "no" and "maybe" strings
'answer_confidences': tfds.features.Sequence(tfds.features.Text()),
'answerable': tfds.features.Scalar(np.int32),
'question_id': tfds.features.Scalar(np.int32),
}),
supervised_keys=None,
homepage='https://vizwiz.org/tasks-and-datasets/vqa/',
citation=_CITATION,
)
def _split_generators(self, dl_manager: tfds.download.DownloadManager):
"""Returns SplitGenerators."""
return {split: self._generate_examples(split)
for split in ('val', 'train', 'test',)}
def _generate_examples(self, split: str):
"""Yields (key, example) tuples from test set."""
annot_fname = os.path.join(_VIZWIZVQA_PATH, 'annotations', f'{split}.json')
with open(annot_fname, 'r') as f:
data = json.loads(f.read())
for v in data:
answers = []
answer_confidences = []
image_file = v['image']
answerable = -1
if split != 'test':
for answer in v['answers']:
# A couple of answers in the train set are empty strings.
if not answer['answer']:
continue
answers.append(answer['answer'])
answer_confidences.append(answer['answer_confidence'])
answerable = v['answerable']
question_id = image_file[:-4]
question_id = int(question_id.split('_')[-1])
yield v['image'], {
'question': v['question'],
'image/filename': image_file,
'question_id': question_id,
'image': os.path.join(_VIZWIZVQA_PATH, split, image_file),
'answers': answers,
'answer_confidences': answer_confidences,
'answerable': answerable,
}
|