File size: 5,486 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# pylint: disable=line-too-long
r"""Import VQAv2 into TFDS format. Uses coco-2014 images.

It's small data, so simple to run locally. First, download all the data:

  mkdir /tmp/data/ ; cd /tmp/data
  wget http://images.cocodataset.org/zips/{train2014,val2014,test2015}.zip
  wget https://s3.amazonaws.com/cvmlp/vqa/mscoco/vqa/v2_Questions_{Train,Val,Test}_mscoco.zip
  wget https://s3.amazonaws.com/cvmlp/vqa/mscoco/vqa/v2_Annotations_{Train,Val}_mscoco.zip
  unzip '*.zip'

Then, run conversion locally (make sure to install tensorflow-datasets for the `tfds` util):

  cd big_vision/datasets
  env TFDS_DATA_DIR=/tmp/tfds tfds build --datasets=vqa

It runs at around 750 examples/sec, so takes around 25min for the 1.2M questions.
Each question is an example; images are repeated, a bit wasteful, but disk is cheap.


Example to load:

  import tensorflow_datasets as tfds
  dataset = tfds.load('vqa', split='train', data_dir='/tmp/tfds')
"""
import json
import os

import numpy as np
import tensorflow_datasets as tfds


_VQAV2_PATH = '/tmp/data'
_IMAGE_PATH = '/tmp/data'


_CITATION = (
    '@InProceedings{balanced_vqa_v2,'
    'author = {Yash Goyal and Tejas Khot and '
    'Douglas Summers{-}Stay and Dhruv Batra and Devi Parikh},'
    'title = {Making the {V} in {VQA} Matter: Elevating the Role of Image'
    'Understanding in {V}isual {Q}uestion {A}nswering},'
    'booktitle = {Computer Vision and Pattern Recognition (CVPR)},'
    'year = {2017},}')


class Vqa(tfds.core.GeneratorBasedBuilder):
  """DatasetBuilder for VQAv2 dataset."""

  VERSION = tfds.core.Version('3.0.0')
  RELEASE_NOTES = {'3.0.0': 'Format as needed for PaliGemma'}

  def _info(self) -> tfds.core.DatasetInfo:
    """Returns the metadata."""

    return tfds.core.DatasetInfo(
        builder=self,
        description='The VQAv2 dataset.',
        features=tfds.features.FeaturesDict({
            'image/id': np.int32,
            'image/filename': tfds.features.Text(),
            'image': tfds.features.Image(encoding_format='jpeg'),
            'question_id': np.int32,
            'question_type': tfds.features.Text(),
            'question_text': tfds.features.Text(),
            'answer_type': tfds.features.Text(),
            'answers': tfds.features.Sequence(tfds.features.Text()),
            'answer_confidences': tfds.features.Sequence(
                tfds.features.ClassLabel(names=['no', 'maybe', 'yes'])),
            'top_answer': tfds.features.Text(),
        }),
        homepage='https://visualqa.org/',
        citation=_CITATION,
    )

  def _split_generators(self, dl_manager: tfds.download.DownloadManager):
    """Returns SplitGenerators."""
    return {
        'train': self._generate_examples('train2014'),
        'validation': self._generate_examples('val2014'),
        'test': self._generate_examples('test2015'),
        'test-dev': self._generate_examples('test-dev2015', 'test2015'),
    }

  def _generate_examples(self, split, image_folder=None):
    """Yields (key, example) tuples from test set."""
    image_folder = image_folder or split

    # The questions file has fields image_id, question, question_id.
    with open(os.path.join(
        _VQAV2_PATH, f'v2_OpenEnded_mscoco_{split}_questions.json')) as f:
      examples = json.load(f)['questions']

    # The questions file has fields: image_id, question_id, answers,
    # answer_type, question_type, multiple_choice_answer.
    if 'test' not in split:
      with open(os.path.join(
          _VQAV2_PATH, f'v2_mscoco_{split}_annotations.json')) as f:
        annots = {a['question_id']: a for a in json.load(f)['annotations']}

    for ex in examples:
      qid = ex['question_id']
      ex = {
          'image/id': ex['image_id'],
          'question_id': qid,
          'question_text': ex['question'],
      }
      if 'test' not in split:
        fname = f'COCO_{image_folder}_{ex["image/id"]:012d}.jpg'
        ex['image/filename'] = fname
        ex['image'] = os.path.join(_IMAGE_PATH, image_folder, fname)
        ann = annots[qid]
        ex['question_type'] = ann['question_type']
        ex['answer_type'] = ann['answer_type']
        ex['answers'] = [a['answer'] for a in ann['answers']]
        ex['answer_confidences'] = [a['answer_confidence']
                                    for a in ann['answers']]
        ex['top_answer'] = ann['multiple_choice_answer']
      else:
        # For test images, a few are from the wrong year...
        fname = f'COCO_{image_folder}_{ex["image/id"]:012d}.jpg'
        ex['image/filename'] = fname
        if os.path.isfile(path := os.path.join(_IMAGE_PATH, image_folder, fname)):
          ex['image'] = path
        else:
          print(ex['image/id'])
          continue
        ex['question_type'] = ''
        ex['answer_type'] = ''
        ex['answers'] = []
        ex['answer_confidences'] = []
        ex['top_answer'] = ''
      yield qid, ex