File size: 6,234 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# pylint: disable=line-too-long
"""Generates xGQA in a TFDS-ready structure.

First, download the data:
  mkdir -p /tmp/data/xgqa/annotations
  wget https://raw.githubusercontent.com/e-bug/iglue/main/datasets/xGQA/annotations/zero_shot/testdev_balanced_questions_bn.json -P /tmp/data/xgqa/annotations
  wget https://raw.githubusercontent.com/e-bug/iglue/main/datasets/xGQA/annotations/zero_shot/testdev_balanced_questions_de.json -P /tmp/data/xgqa/annotations
  wget https://raw.githubusercontent.com/e-bug/iglue/main/datasets/xGQA/annotations/zero_shot/testdev_balanced_questions_en.json -P /tmp/data/xgqa/annotations
  wget https://raw.githubusercontent.com/e-bug/iglue/main/datasets/xGQA/annotations/zero_shot/testdev_balanced_questions_id.json -P /tmp/data/xgqa/annotations
  wget https://raw.githubusercontent.com/e-bug/iglue/main/datasets/xGQA/annotations/zero_shot/testdev_balanced_questions_ko.json -P /tmp/data/xgqa/annotations
  wget https://raw.githubusercontent.com/e-bug/iglue/main/datasets/xGQA/annotations/zero_shot/testdev_balanced_questions_pt.json -P /tmp/data/xgqa/annotations
  wget https://raw.githubusercontent.com/e-bug/iglue/main/datasets/xGQA/annotations/zero_shot/testdev_balanced_questions_ru.json -P /tmp/data/xgqa/annotations
  wget https://raw.githubusercontent.com/e-bug/iglue/main/datasets/xGQA/annotations/zero_shot/testdev_balanced_questions_zh.json -P /tmp/data/xgqa/annotations
  wget https://downloads.cs.stanford.edu/nlp/data/gqa/images.zip -P /tmp/data/xgqa/
  unzip /tmp/data/xgqa/images.zip -d /tmp/data/xgqa/

Then, run conversion locally (make sure to install tensorflow-datasets for the `tfds` util):

  cd big_vision/datasets
  env TFDS_DATA_DIR=/tmp/tfds tfds build --datasets=xgqa

Example to load:

import tensorflow_datasets as tfds
dataset = tfds.load(
    'xgqa', split='test_zs_en',
    data_dir='/tmp/tfds')
"""
import json
import os

import tensorflow_datasets as tfds

_DESCRIPTION = """xGQA (uses GQA images)."""

# pylint: disable=line-too-long
_CITATION = (
    '@inproceedings{pfeiffer-etal-2022-xgqa,'
    'title = "x{GQA}: Cross-Lingual Visual Question Answering",'
    'author = "Pfeiffer, Jonas  and'
    '  Geigle, Gregor  and'
    '  Kamath, Aishwarya  and'
    '  Steitz, Jan-Martin  and'
    '  Roth, Stefan  and'
    '  Vuli{\'c}, Ivan  and'
    '  Gurevych, Iryna",'
    'booktitle = "Findings of the Association for Computational Linguistics: '
    'ACL 2022",'
    'month = may,'
    'year = "2022",'
    'address = "Dublin, Ireland",'
    'publisher = "Association for Computational Linguistics",'
    'url = "https://aclanthology.org/2022.findings-acl.196",'
    'doi = "10.18653/v1/2022.findings-acl.196",'
    'pages = "2497--2511",'
    '}'
)
# pylint: enable=line-too-long

# When running locally (recommended), copy files as above an use these:
_DATA_PATH = '/tmp/data/xgqa/'
_IMAGE_PATH = '/tmp/data/xgqa/images/'

LANGUAGES = frozenset(['bn', 'de', 'en', 'id', 'ko', 'pt', 'ru', 'zh'])


class XGQA(tfds.core.GeneratorBasedBuilder):
  """DatasetBuilder for XGQA dataset."""

  VERSION = tfds.core.Version('1.0.0')
  RELEASE_NOTES = {'1.0.0': 'First release.'}

  def _info(self):
    """Returns the metadata."""

    return tfds.core.DatasetInfo(
        builder=self,
        description=_DESCRIPTION,
        features=tfds.features.FeaturesDict({
            'example_id': tfds.features.Text(),
            'image/id': tfds.features.Text(),
            'image': tfds.features.Image(encoding_format='jpeg'),
            'question': tfds.features.Text(),
            'answer': tfds.features.Text(),
        }),
        supervised_keys=None,
        homepage='https://github.com/adapter-hub/xGQA',
        citation=_CITATION,
    )

  def _split_generators(self, dl_manager: tfds.download.DownloadManager):
    """Returns SplitGenerators."""
    d = dict()
    for l in LANGUAGES:
      d.update({
          f'test_zs_{l}': self._generate_examples('test', 'zero_shot', l),
          f'test_fs_{l}': self._generate_examples('test', 'few_shot', l),
          f'dev_fs_{l}': self._generate_examples('test', 'few_shot', l),
          f'train_fs1_{l}': self._generate_examples('train_1', 'few_shot', l),
          f'train_fs5_{l}': self._generate_examples('train_5', 'few_shot', l),
          f'train_fs10_{l}': self._generate_examples('train_10', 'few_shot', l),
          f'train_fs20_{l}': self._generate_examples('train_20', 'few_shot', l),
          f'train_fs25_{l}': self._generate_examples('train_25', 'few_shot', l),
          f'train_fs48_{l}': self._generate_examples('train_48', 'few_shot', l),
      })
    return d

  def _generate_examples(self, split, num_shots, lang):
    """Yields (key, example) tuples."""
    # Loads the questions for each image.
    if num_shots == 'few_shot':
      file_path = os.path.join(_DATA_PATH, 'annotations', 'few_shot', lang,
                               f'{split}.json')
    elif num_shots == 'zero_shot':
      file_path = os.path.join(_DATA_PATH, 'annotations', 'zero_shot',
                               f'testdev_balanced_questions_{lang}.json')
    else:
      raise ValueError(f'Unknown num_shots: {num_shots}')
    with open(file_path, 'r') as f:
      entries = json.load(f)

    # Make one entry per question-answer pair.
    for question_id, question_data in entries.items():
      example_id = f'{question_id}_{lang}'
      yield example_id, {
          'example_id': example_id,
          'image/id': question_data['imageId'],
          'image': os.path.join(_IMAGE_PATH, f'{question_data["imageId"]}.jpg'),
          'question': question_data['question'],
          'answer': question_data['answer'],
      }