File size: 9,307 Bytes
74e8f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utils for few-shot evaluation."""
# pylint: disable=consider-using-from-import,g-importing-member
import functools
import big_vision.datasets.core as ds_core
import big_vision.input_pipeline as input_pipeline
import big_vision.pp.builder as pp_builder
import big_vision.utils as u
import jax
import jax.numpy as jnp
from jax.sharding import NamedSharding as Sharding
from jax.sharding import PartitionSpec as P
import numpy as np
BIAS_CONSTANT = 100.0
# Temporary global flag to facilitate backwards compatability. Will be removed
# by the end of year 2023.
API = "jit"
# Setup function for few-shot regression on CPU to avoid "polluting" the TPU.
@u.jit_cpu(static_argnums=(2,))
def _precompute_cache(x, y, num_classes):
"""Cache quantities to speed-up the computation of L2-regularized least-sq."""
# Whiten
mean = jnp.mean(x, axis=0, keepdims=True)
std = jnp.std(x, axis=0, keepdims=True) + 1e-5
x = (x - mean) / std
# Add a constant feature for the bias, large so it's almost unregularized:
x = jnp.pad(x, ((0, 0), (0, 1)), constant_values=BIAS_CONSTANT)
# To one-hot representation rescaled into {-1, 1}
y = 2.0 * jax.nn.one_hot(y, num_classes) - 1.0
num_points, dim = x.shape
# Let N be the number of points, D the dimension and C the number of classes.
# We have x of shape (N, D) and y of shape (N, C).
# For least-squares, we can compute
#
# (A) when N >= D, (x^T x + l2 Id)^{-1} x^T y
# (B) when D > N, x^T (x x^T + l2 Id)^{-1} y
#
# We pre-compute the eigen-decomposition of either x^T x or x x^T which
# becomes q diag(eigs) q^T with q unitary matrix either (D, D) or (N, N)
# and eigs a vector (D,) or (N,).
#
# For any l2 > 0, we can compute (x^T x + l2 Id)^{-1} or (x x^T + l2 Id)^{-1}
# by simply computing q (diag(eigs) + l2 Id)^{-1} q^T.
# (SVD would be more natural here, but it proved slower, so we use eigh)
#
# Both cases (A) and (B) can be viewed as lhs (diag(eigs) + l2 Id)^{-1} rhs,
# where lhs/rhs are pre-computed left/right-hand sides to specify.
#
# Detailed evaluation in terms of time and fewshot metrics can be found in
# (internal link)
#
# Implemented by Rodolphe Jenatton.
if num_points >= dim:
eigs, q = jnp.linalg.eigh(x.T @ x)
rhs = q.T @ (x.T @ y)
lhs = q
else:
eigs, q = jnp.linalg.eigh(x @ x.T)
rhs = q.T @ y
lhs = x.T @ q
cache = {
"eigs": eigs,
"rhs": rhs,
"lhs": lhs,
"mean": mean,
"std": std
}
return cache
@u.jit_cpu()
def _eig_fewshot_acc_fn(cache, x_test, y_test, l2_reg):
"""Computes (x,y) linear regression accuracy on (x_test, y_test)."""
x_test = (x_test - cache["mean"]) / cache["std"]
x_test = jnp.pad(x_test, ((0, 0), (0, 1)), constant_values=BIAS_CONSTANT)
rhs = cache["rhs"]
lhs = cache["lhs"]
eigs = cache["eigs"]
# See comments in _precompute_cache for context about the formula.
scaling = 1.0 / (eigs + l2_reg * jnp.ones_like(eigs))
scaling = scaling.reshape((1, -1))
w = (lhs * scaling) @ rhs
# Predict test-set values and measure their accuracy
preds = jnp.argmax(x_test @ w, axis=1)
return jnp.mean(preds == y_test)
class Evaluator:
"""Class for few-shot evaluation."""
def __init__(self, predict_fn, batch_size,
datasets, shots, l2_reg,
pp_train, pp_eval, display_first,
representation_layer=None, num_seeds=3,
label_key="label", mask_key="_mask", data_dir=None, *,
devices):
self.datasets = datasets
self.shots = shots
self.l2_reg = l2_reg
self.batch_size = batch_size
self.pp_tr = pp_train
self.pp_te = pp_eval
self.display_first = display_first
self._datasets = {} # Cache for tfds data. Persists while object is alive.
self._repr = {} # Cache for precomputed repr. Persists within the run call.
self.num_seeds = num_seeds
self.label_key = label_key
self.mask_key = mask_key
self.data_dir = data_dir
self.devices = devices
self.mesh = jax.sharding.Mesh(devices, ("devices",))
self.repr_fn = self.get_representation_fn(
predict_fn, representation_layer)
def get_representation_fn(self, predict_fn, representation_layer):
# `out_shardings=Sharding(self.mesh, P())` will "all_gather" the outputs.
@functools.partial(jax.jit, out_shardings=Sharding(self.mesh, P()))
def _repr_fn(train_state, batch, labels, mask):
zimg, *_, out = predict_fn(train_state, batch)
if representation_layer is not None:
rep = u.tree_get(out, representation_layer)
else:
rep = zimg
return rep, labels, mask
return _repr_fn
# Setup input pipeline.
def _get_dataset(self, dataset, train_split, test_split):
"""Lazy-loads given dataset."""
key = (dataset, train_split, test_split)
try:
return self._datasets[key]
except KeyError:
# NOTE: only supporting TFDS data for now for bwd compat/lazyness.
train_data = ds_core.get(
name=dataset, split=train_split, data_dir=self.data_dir
)
test_data = ds_core.get(
name=dataset, split=test_split, data_dir=self.data_dir
)
train_ds, batches_tr = input_pipeline.make_for_inference(
train_data.get_tfdata(ordered=True),
num_ex_per_process=train_data.num_examples_per_process(),
batch_size=self.batch_size,
preprocess_fn=pp_builder.get_preprocess_fn(self.pp_tr))
test_ds, batches_te = input_pipeline.make_for_inference(
test_data.get_tfdata(ordered=True),
num_ex_per_process=test_data.num_examples_per_process(),
batch_size=self.batch_size,
preprocess_fn=pp_builder.get_preprocess_fn(self.pp_te))
num_classes = train_data.builder.info.features[self.label_key].num_classes
return self._datasets.setdefault(
key, (train_ds, batches_tr, test_ds, batches_te, num_classes))
def _get_repr(self, params, data, steps):
"""Compute representation for the whole dataset."""
pre_logits_list = []
labels_list = []
for batch, _ in zip(
input_pipeline.start_global(data, self.devices, 0), range(steps)):
labels, mask = batch.pop(self.label_key), batch.pop(self.mask_key)
pre_logits, labels, mask = jax.device_get(self.repr_fn(
params, batch, labels, mask))
mask = mask.astype(bool)
pre_logits_list.append(pre_logits[mask])
labels_list.append(labels[mask])
pre_logits = np.concatenate(pre_logits_list, axis=0)
labels = np.concatenate(labels_list, axis=0)
return pre_logits, labels
def compute_fewshot_metrics(self, train_state, seed,
dataset, train_split, test_split):
"""Compute few-shot metrics on one dataset."""
if dataset in self._repr:
repr_train, labels_train, repr_test, labels_test, num_classes = (
self._repr[dataset])
else:
train_ds, steps_tr, test_ds, steps_te, num_classes = self._get_dataset(
dataset, train_split, test_split)
repr_train, labels_train = self._get_repr(train_state, train_ds, steps_tr)
repr_test, labels_test = self._get_repr(train_state, test_ds, steps_te)
self._repr[dataset] = (repr_train, labels_train,
repr_test, labels_test,
num_classes)
# Collect where we have samples of which classes.
rng = np.random.default_rng(seed)
class_indices = [rng.permutation(np.where(labels_train == cls_i)[0])
for cls_i in range(num_classes)]
results = {}
for shots in self.shots:
all_idx = [indices[:shots] for indices in class_indices]
all_idx = np.concatenate(all_idx, axis=0)
x = u.put_cpu(repr_train[all_idx])
y = u.put_cpu(labels_train[all_idx])
repr_test, labels_test = u.put_cpu((repr_test, labels_test))
# Note the code is optimized to solve multiple LSR tasks for changing l2
# strength, even though we currently used the fixed l2_reg constant.
cache = _precompute_cache(x, y, num_classes)
acc = _eig_fewshot_acc_fn(
cache, repr_test, labels_test, u.put_cpu(self.l2_reg))
results[shots] = jax.device_get(acc)
return results
def run(self, train_state):
"""New API executed in terms of old API."""
self._repr = {}
for seed in range(self.num_seeds):
for name, dataset_args in self.datasets.items():
result = self.compute_fewshot_metrics(train_state, seed, *dataset_args)
for shots, v in result.items():
prefix = "a/" if (name, shots) in self.display_first else "z/"
suffix = f"-seed-{seed}"
yield f"{prefix}{name}_{shots}shot{suffix}", v
|