File size: 13,678 Bytes
74e8f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""COCO17 panoptic evaluation.
jax.jit-compatible fork of the evaluator from evaluators/proj/uvim.
"""
import functools
import itertools
import json
import os
import tempfile
import time
from typing import Any
import zipfile
from absl import flags
from absl import logging
from big_vision import input_pipeline
from big_vision import utils
from big_vision.datasets import core as ds_core
import big_vision.pp.builder as pp_builder
import jax
import jax.numpy as jnp
import numpy as np
from pycocotools.panopticapi import evaluation
import panopticapi_converters.twochannels2panoptic_coco_format as converter
import tensorflow as tf
import tensorflow_datasets as tfds
from tensorflow.io import gfile
# Temporary global flag to facilitate backwards compatability.
API = 'jit'
ROOT = os.environ.get('COCO_DATA_DIR', '.')
PANOPTIC_COCO_CATS_FILE = f'{ROOT}/panoptic_coco_categories.json'
PANOPTIC_2017 = {
'train': f'{ROOT}/panoptic_train2017.json',
'validation': f'{ROOT}/panoptic_val2017.json',
}
PANOPTIC_GT_ZIP = {
'train': f'{ROOT}/panoptic_train2017.zip',
'validation': f'{ROOT}/panoptic_val2017.zip',
}
# Note: global to avoid jax re-compiling across different evaluator instances.
@functools.cache
def _get_predict_fn(predict_fn, mesh=None):
"""Wrapper for jit-compiled predict function."""
# `out_shardings` annotation is needed because of the `all_gather` ops in the
# pmap implementation.
@functools.partial(jax.jit,
out_shardings=jax.sharding.NamedSharding(
mesh, jax.sharding.PartitionSpec()))
def _run_predict_fn(train_state, batch):
"""Run predict_fn and gather all outputs on all devices."""
y = predict_fn(train_state, batch)
res = {
'image/id': batch['image/id'],
'mask': batch['_mask'],
'y': jnp.stack([y['semantics'], y['instances']], axis=-1),
}
return res
return _run_predict_fn
class Evaluator:
"""Panoptic segmentation evaluator: calls official COCO API."""
def __init__(
self,
predict_fn,
pp_fn,
batch_size,
data=None,
cache_final=True,
cache_raw=False,
prefetch=1,
save_dir=None,
*,
devices,
):
"""Panoptic segmentation evaluator: calls official COCO API.
Args:
predict_fn: jit-compilable function, which accepts arbitrary dictionaries
of parameters and data, where the data dictionary is produced by the
`pp_fn`. It is expected to output a 2-channel mask, where the first
channel encodes semantics, and the second channel encodes instance ids.
pp_fn: Preprocessing function, sepcified as string.
batch_size: Batch size.
data: Dict specifying name and split of the data set. Defaults to the
standard COCO (2017).
cache_final: Whether to cache the data after preprocessing - see
input_pipeline for details.
cache_raw: Whether to cache the raw data - see input_pipline for details.
prefetch: Number of batches to prefetch
save_dir: Directory to save the results in.
devices: List of jax devices.
"""
self.predict_fn = _get_predict_fn(
predict_fn, jax.sharding.Mesh(devices, ('devices',)))
data_specs = dict(name='coco/2017_panoptic',
data_dir=None, split='validation')
data_specs.update(data or {})
data = ds_core.get(**data_specs)
self.dataset, self.steps = input_pipeline.make_for_inference(
data.get_tfdata(ordered=True), batch_size=batch_size,
num_ex_per_process=data.num_examples_per_process(),
preprocess_fn=pp_builder.get_preprocess_fn(pp_fn),
cache_final=cache_final, cache_raw=cache_raw)
self.data_iter = input_pipeline.start_global(
self.dataset, devices, prefetch)
# Only process 0 runs conversion to png and calls into coco api.
if jax.process_index() == 0:
self.result_dir = tempfile.TemporaryDirectory()
(self.gt_folder, self.gt_json, self.categories_json,
self.remap, self.size_map) = _prepare_ground_truth(
data_specs['name'], data_specs['split'],
data_specs.get('data_dir'))
if save_dir:
self.save_dir = save_dir.format(workdir=flags.FLAGS.workdir)
gfile.makedirs(self.save_dir)
else:
self.save_dir = None
def _compute_png_predictions(
self, train_state: Any) -> Any:
"""Computes predictions and converts then to png to optimize memory use."""
count = 0
logging.info('Panoptic eval: running inference.')
for batch in itertools.islice(self.data_iter, self.steps):
out = self.predict_fn(train_state, batch)
if jax.process_index():
continue
out = jax.device_get(out)
mask = out['mask']
pan_recs = out['y'][mask]
ids = out['image/id'][mask]
for pan_rec, image_id in zip(pan_recs, ids):
sem = pan_rec[..., 0]
ins = pan_rec[..., 1]
sem_remapped = np.array(sem)
for v in np.unique(sem):
sem_remapped[sem == v] = self.remap[v]
sem = sem_remapped
pan_mask = np.stack([sem, ins, np.zeros_like(sem)], axis=-1)
pan_mask = utils.put_cpu(pan_mask)
pan_mask = _resize_nearest(pan_mask, self.size_map[image_id])
pan_mask_png = tf.io.encode_png(pan_mask.astype('uint8')).numpy()
fname = f'{self.result_dir.name}/{image_id:012d}.png'
with open(fname, 'wb') as f:
f.write(pan_mask_png)
count += 1
logging.log_every_n_seconds(
logging.INFO, 'Panoptic eval: processed %i examples so far.', 30,
count)
if jax.process_index():
return None
logging.info('Panoptic eval: inference done. Processed %d examples.', count)
return self.result_dir
def run(self, train_state):
"""Run panoptic segmentation evaluation.
Args:
train_state: pytree containing the model parameters.
Yields:
Tuples consisting of metric name and value.
"""
# Note result_dir is constant, but files inside are mutated.
result_dir = self._compute_png_predictions(train_state)
if jax.process_index():
return
if self.save_dir:
gfile.RecursivelyCopyDir(result_dir.name, self.save_dir, overwrite=True)
with tempfile.TemporaryDirectory() as pred_folder, \
tempfile.NamedTemporaryFile(mode='w') as pred_json:
logging.info('Panoptic eval: running conversion.')
converter.converter(
source_folder=result_dir.name,
images_json_file=self.gt_json,
categories_json_file=self.categories_json,
segmentations_folder=pred_folder,
predictions_json_file=pred_json.name)
logging.info('Panoptic eval: conversion done.')
logging.info('Panoptic eval: running metrics computation.')
res = evaluation.pq_compute(gt_json_file=self.gt_json,
gt_folder=self.gt_folder,
pred_json_file=pred_json.name,
pred_folder=pred_folder)
logging.info('Panoptic eval: metrics computation done.')
for k in ['All', 'Stuff', 'Things']:
for m in ['pq', 'rq', 'sq']:
yield f'{k}_{m}', res[k][m]
def _prepare_ground_truth(dataset, split, data_dir):
if dataset == 'coco/2017_panoptic' and data_dir is None:
return _prepare_ground_truth_from_zipfiles(split)
else:
return _prepare_ground_truth_from_dataset(dataset, split, data_dir)
@functools.lru_cache(maxsize=None)
def _prepare_ground_truth_from_dataset(dataset, split, data_dir):
"""Prepare ground truth from a tf.data.Dataset.
Args:
dataset: TFDS-compatible dataset specification.
split: Data set split to use.
data_dir: Folder containing the data
Returns:
A tuple containing the folder containing the ground-truth data, the
ground truth annotations loaded from json, the categories loaded form json,
a map for remapping, and a map mapping image id to image size.
"""
tfds_dataset = tfds.builder(
dataset, data_dir=data_dir).as_dataset(split=split)
categories_json = _make_local_copy(PANOPTIC_COCO_CATS_FILE)
with gfile.GFile(categories_json, 'rb') as f:
categories = json.loads(f.read())
# Build map from tfds class ids to COCO class ids.
remap = {0: 0}
with gfile.GFile(categories_json, 'r') as f:
remap = {**remap, **{(i + 1): x['id'] for i, x in enumerate(categories)}}
gt_folder = tempfile.mkdtemp()
gfile.makedirs(gt_folder)
size_map = {}
annotations = []
images = []
for example in tfds_dataset:
image_id = int(example['image/id'])
panoptic_image = example['panoptic_image']
ann_ids = example['panoptic_objects']['id']
ann_labels = example['panoptic_objects']['label']
ann_iscrowd = example['panoptic_objects']['is_crowd']
ann_area = example['panoptic_objects']['area']
fname = f'{image_id:012d}.png'
with gfile.GFile(os.path.join(gt_folder, fname), 'wb') as f:
f.write(tf.io.encode_png(panoptic_image).numpy())
size_map[image_id] = (panoptic_image.shape[0], panoptic_image.shape[1])
segments_info = []
for i in range(len(ann_ids)):
segments_info.append({
'id': int(ann_ids[i]),
'category_id': remap[int(ann_labels[i] + 1)],
'iscrowd': int(ann_iscrowd[i]),
'area': int(ann_area[i]),
})
annotations.append({
'file_name': str(fname),
'image_id': int(image_id),
'segments_info': segments_info
})
images.append({
'id': image_id,
'file_name': f'{image_id:012d}.jpg',
})
# Write annotations.json needed for pq_compute.
gt_json = os.path.join(gt_folder, 'annotations.json')
with gfile.GFile(gt_json, 'wb') as f:
f.write(json.dumps({
'images': images,
'annotations': annotations,
'categories': categories,
}))
return gt_folder, gt_json, categories_json, remap, size_map
def _prepare_ground_truth_from_zipfiles(split):
"""Prepare ground truth from coco zip files.
Args:
split: dataset split to prepare ground truth for.
Returns:
A tuple containing the folder containing the ground-truth data, the ground
truth annotations loaded from json, the categories loaded form json, a map
for remapping, and a map mapping image id to image size.
"""
split_prefix = split.split('[')[0]
if split_prefix not in ('train', 'validation'):
raise ValueError(f'Split {split} not supported')
# The following 4 calls are cached. This allows to save significant time
# in use cases like sweeping predict_fn hparams on the same run.
gt_json = _make_local_copy(PANOPTIC_2017[split_prefix])
gt_folder = _make_local_unzip_copy(PANOPTIC_GT_ZIP[split_prefix])
categories_json = _make_local_copy(PANOPTIC_COCO_CATS_FILE)
image_ids = _list_image_ids('coco/2017_panoptic', split)
gt_folder = os.path.join(
gt_folder, 'panoptic_val2017'
if split_prefix == 'validation' else 'panoptic_train2017')
# Build map from tfds class ids to COCO class ids.
remap = {0: 0}
with gfile.GFile(categories_json, 'r') as f:
remap = {**remap, **{(i + 1): x['id'] for i, x in enumerate(json.load(f))}}
# Filters gt_json to contain only annotations for images in dataset.
with gfile.GFile(gt_json) as f:
data = json.load(f)
logging.info(
'Panoptic eval: pre-filter %d annotations.',
len(data['annotations'])
)
data['images'] = [x for x in data['images'] if x['id'] in image_ids]
data['annotations'] = [
x for x in data['annotations'] if x['image_id'] in image_ids
]
logging.info(
'Panoptic eval: post-filter %d annotations.',
len(data['annotations'])
)
filtered_gt_json = tempfile.NamedTemporaryFile(delete=False).name
with open(filtered_gt_json, 'w') as f:
json.dump(data, f)
# Precompute images sizes.
size_map = {x['id']: (x['height'], x['width']) for x in data['images']}
return gt_folder, filtered_gt_json, categories_json, remap, size_map
@functools.lru_cache(maxsize=None)
def _list_image_ids(dataset, split):
d = tfds.load(dataset, split=split).map(lambda x: x['image/id'])
return frozenset(d.as_numpy_iterator())
@functools.lru_cache(maxsize=None)
def _make_local_copy(fname) -> str:
start = time.monotonic()
local_file = tempfile.NamedTemporaryFile(delete=False)
gfile.copy(fname, local_file.name, overwrite=True)
logging.info('Copy %s in %d seconds.', fname, time.monotonic() - start)
return local_file.name
@functools.lru_cache(maxsize=None)
def _make_local_unzip_copy(fname) -> str:
start = time.monotonic()
folder = tempfile.mkdtemp()
with tempfile.NamedTemporaryFile() as tmp_zip_file:
gfile.copy(fname, tmp_zip_file.name, overwrite=True)
with zipfile.ZipFile(tmp_zip_file.name, 'r') as f:
f.extractall(folder)
logging.info('Copy %s in %d seconds.', fname, time.monotonic() - start)
return folder
@utils.jit_cpu(static_argnums=(1,))
def _resize_nearest(image, shape):
return jax.image.resize(image, shape + image.shape[-1:], 'nearest')
|