File size: 17,522 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Discriminative zero-shot classification evaluator.
"""

import functools
import time

from absl import logging
from big_vision import input_pipeline
from big_vision import utils
from big_vision.evaluators.proj.image_text import prompt_engineering
from big_vision.pp import ops_general  # pylint: disable=unused-import
from big_vision.pp import ops_image  # pylint: disable=unused-import
import big_vision.pp.builder as pp_builder
import jax
import jax.numpy as jnp
from jax.sharding import NamedSharding
from jax.sharding import PartitionSpec as P
import numpy as np
import tensorflow as tf
import tensorflow_datasets as tfds


# Temporary global flag to facilitate backwards compatability. Will be removed
# by the end of year 2023.
API = "jit"


DATASET_NAMES = ("imagenet2012", "cifar100", "oxford_iiit_pet")
DEFAULT_OVERRIDES = (
    ("imagenet2012", (
        ("class_names", "clip"),
        ("split", "validation"),
        )),
    )


def _with_infinite_padding(dataset):
  """Adds "infinite padding" to the dataset."""
  filler_element = tf.nest.map_structure(
      lambda spec: tf.zeros(spec.shape, spec.dtype)[None], dataset.element_spec)
  filler_element["mask"] = [False]
  filler_dataset = tf.data.Dataset.from_tensor_slices(filler_element)
  dataset = dataset.map(
      lambda features: dict(mask=True, **features),
      num_parallel_calls=tf.data.experimental.AUTOTUNE)
  return dataset.concatenate(filler_dataset.repeat(None))


# This is needed so retrieval_test can replace dataset info.
def _get_dataset_info(builder):
  return builder.info


def prepare_datasets(img_dataset,
                     class_names,
                     *,
                     prompt_templates,
                     pp_img,
                     pp_txt,
                     cache_final=False,
                     pre_filter_fn=None,
                     class_name_offset=0):
  """Returns unbatched `ds_images, ds_texts` datasets."""

  assert prompt_templates, "Must specify prompt templates (e.g. simply ['{}'])"

  def expand_aliases(idx, class_name):
    class_names = tf.strings.split(class_name, ",")
    return tf.data.Dataset.from_tensor_slices((
        tf.repeat([idx + class_name_offset], len(class_names), axis=0),
        class_names,
    ))

  def add_prompts(idx, class_name):
    return tf.data.Dataset.from_tensor_slices({
        "label": tf.repeat([idx], len(prompt_templates), axis=0),
        "class_name": tf.repeat([class_name], len(prompt_templates), axis=0),
        "prompt_template": prompt_templates,
    })

  def substitute_prompt(features):
    parts = tf.strings.split(features["prompt_template"], "{}")
    tf.debugging.assert_equal(len(parts), 2, features["prompt_template"])
    return {
        "label": features["label"],
        "texts": tf.strings.join([parts[0], features["class_name"], parts[1]])
    }

  if pre_filter_fn:
    img_dataset = img_dataset.filter(pre_filter_fn)
  ds_images = img_dataset.map(
      pp_builder.get_preprocess_fn(f"{pp_img}|keep('label', 'image')"))
  ds_texts = tf.data.Dataset.from_tensor_slices(list(class_names)).enumerate(
  ).flat_map(expand_aliases).flat_map(add_prompts).map(substitute_prompt).map(
      pp_builder.get_preprocess_fn(f"{pp_txt}|keep('label', 'labels')"))

  if cache_final:
    ds_images, ds_texts = ds_images.cache(), ds_texts.cache()

  return ds_images, ds_texts


def _split_and_batch(dataset_name, data_dir, class_names, batch_size, split,
                     get_ds):
  """Splits dataset, calls `get_ds` and returns padded + batched datasets."""
  assert not batch_size % jax.device_count(), (
      f"batch_size={batch_size} % jax.device_count()={jax.device_count()}")
  builder = tfds.builder(dataset_name, data_dir=data_dir)

  # Split class names (last process gets remainder).
  if len(class_names) < jax.process_count():
    # See (internal link) for more details.
    class_names += [""] * (jax.process_count() - len(class_names))
  per_process = len(class_names) // jax.process_count()
  class_name_offset = per_process * jax.process_index()
  if jax.process_index() == jax.process_count() - 1:
    class_names = class_names[class_name_offset:]
  else:
    class_names = class_names[class_name_offset:class_name_offset + per_process]

  ds_images, ds_texts = get_ds(
      builder.as_dataset(split=tfds.split_for_jax_process(split)),
      class_names,
      class_name_offset=class_name_offset)
  return (
      _with_infinite_padding(ds_images).batch(batch_size),
      _with_infinite_padding(ds_texts).batch(batch_size),
  )


def _average_embeddings(embeddings, *, labels, num_classes, normalize):
  """Computes per-class averages of `embeddings`."""
  assert embeddings.ndim == 2, f"Expected {embeddings.ndim}==2"
  assert labels.ndim == 1, f"Expected {labels.ndim}==1"
  assert len(labels) == len(embeddings), (
      f"Expected {len(labels)}=={len(embeddings)}")

  byidx = [[] for _ in range(num_classes)]
  for label, embedding in zip(labels, embeddings):
    byidx[label].append(embedding)
  missing = set(range(num_classes)) - set(
      idx for idx, embs in enumerate(byidx) if len(embs))
  assert not missing, f"Classes without embeddings: {missing}"
  embeddings = [np.array(embedding).mean(axis=0) for embedding in byidx]
  embeddings = np.stack(embeddings)

  assert len(embeddings) == num_classes
  if normalize:
    embeddings /= 1e-8 + np.linalg.norm(embeddings, axis=1, keepdims=True)
  return embeddings


class Evaluator:
  """Zero-shot classification evaluator."""

  def __init__(self,
               predict_fn,
               *,
               batch_size,
               devices,
               dataset_names=DATASET_NAMES,
               data_dir=None,
               class_names="dataset_info:label",
               split="test",
               prompt_templates="clip_paper",
               canonicalize=True,
               pp_img="resize(224)|value_range(-1,1)",
               pp_txt="tokenize(max_len=16, eos='sticky', "
                      "pad_value=1, inkey='texts', outkey='labels')",
               cache_final=False,
               pre_filter_fn=None,
               first_class_name_only=True,
               dataset_overrides=DEFAULT_OVERRIDES,
               async_delay=1):
    """Initializes a new zero-shot classification evaluator.

    See `prepare_datasets()` for details on how the dataset is pre-processed.

    Args:
      predict_fn: Prediction function with signature
        `zimg, ztxt, out = predict_fn(params, images, texts)`
      batch_size: Global batch size.
      devices: list of devices.
      dataset_names: Names of TFDS datasets to evaluate on.
      data_dir: Optional argument to `tfds.builder()`.
      class_names: Usually specified as a string that is interpreted by
        `prompt_engineering.get_class_names()` to look up class names.
        Alternatively, this attribute can be a list of class names (using ","
        to separate multiple aliases).
      split: Which dataset split to use for evaluation.
      prompt_templates: Specifies which prompt templates to use. See module
        big_vision.evaluators.proj.image_text.prompte_engineering
        for valid values.
      canonicalize: Whether class names and prompt templates should be
        canonicalized. See `prompt_engineering.py` for details.
      pp_img: Preprocessing string for images. Preprocessed features should
        contain key "image" with value that can be batched and is suitable for
        the `images` argument of `predict_fn` input``.
      pp_txt: Preprocessing string for texts. Can expect "texts" key as an input
        (shape=[], dtype=string), and is expected to produce "labels" key that
        is suitable for the `text` argument of `predict_fn` input.
      cache_final: Wether preprocesse dataset should be cached.
      pre_filter_fn: Predicate applied to the dataset for filtering records.
      first_class_name_only: Whether only the first class name should be
        considered (i.e. not using any aliases).
      dataset_overrides: Mapping `dataset_name` to an optional dictionary that
        can override parameters `dataset_name`, `data_dir`, `pp_img`, `pp_txt`,
        `class_names`, `split`, `pre_filter_fn`, and the extra
        `class_names_dataset_name`.
        Works with tuple/dict of tuples/dicts.
      async_delay: How many steps to wait before checking if all hosts have
        finished their batch. A value > 1 allows for more parallelized
        processing, but will results in more unnecessary steps with padded data.
    """
    t0 = time.monotonic()
    self.datasets = {}
    self.prompt_templates = prompt_engineering.get_prompt_templates(
        prompt_templates, canonicalize=canonicalize)
    self._axis_name = "batch"
    dataset_overrides = {k: dict(v) for k, v in dict(dataset_overrides).items()}

    for dataset_name in dataset_names:
      overrides = dataset_overrides.pop(dataset_name, {})
      dataset_name_ = overrides.pop("dataset_name", dataset_name)
      data_dir_ = overrides.pop("data_dir", data_dir)
      class_names_dataset_name = overrides.pop("class_names_dataset_name",
                                               dataset_name_)
      class_names_ = overrides.pop("class_names", class_names)
      class_names_ = prompt_engineering.get_class_names(
          dataset_name=class_names_dataset_name,
          source=class_names_,
          canonicalize=canonicalize)
      pp_img_ = overrides.pop("pp_img", pp_img)
      pp_txt_ = overrides.pop("pp_txt", pp_txt)
      cache_final_ = overrides.pop("cache_final", cache_final)
      split_ = overrides.pop("split", split)
      pre_filter_fn_ = overrides.pop("pre_filter_fn", pre_filter_fn)
      prompt_templates_ = overrides.pop("prompt_templates", prompt_templates)
      canonicalize_ = overrides.pop("canonicalize", canonicalize)
      prompt_templates_ = prompt_engineering.get_prompt_templates(
          prompt_templates_, canonicalize=canonicalize_)
      assert not overrides, f"Unknown overrides {dataset_name}: {overrides}"

      if first_class_name_only:
        class_names_ = [name.split(",")[0] for name in class_names_]
      ds_images, ds_texts = _split_and_batch(
          dataset_name=dataset_name_,
          data_dir=data_dir_,
          class_names=class_names_,
          batch_size=batch_size,
          split=split_,
          get_ds=functools.partial(
              prepare_datasets,
              pp_img=pp_img_,
              pp_txt=pp_txt_,
              cache_final=cache_final_,
              pre_filter_fn=pre_filter_fn_,
              prompt_templates=prompt_templates_))
      self.datasets[dataset_name] = dict(
          images=ds_images, texts=ds_texts, class_names=class_names_,
          dataset_name=dataset_name_, split=split_)

    assert not dataset_overrides, f"Extra overrides: {dataset_overrides}"

    def embed_texts(train_state, texts):
      """Returns text embeddings."""
      _, ztxt, _ = predict_fn(train_state, {"labels": texts})
      return ztxt

    def count_correct(train_state, return_embeddings, *, mask, labels, image,
                      ztxt):
      """Returns count of correct predictions (and optionally embeddings)."""
      zimg, _, _ = predict_fn(train_state, {"image": image})
      best_txt = (zimg @ ztxt.T).argmax(axis=1)
      # labels has format [[1, -1, -1], [5, -1, -1], [7, 2, -1], ...]
      # so here we count "any" correct, such that the counting matches the
      # multilabel scenario described in "are we done with imagenet"
      # (http://arxiv.org/abs/2006.07159) section 3.1
      if labels.ndim == 1:
        labels = labels[..., None]
      assert labels.ndim == 2, labels.shape
      matching = (best_txt[:, None] == labels).sum(axis=1)
      correct = jnp.where(mask, (matching > 0).astype(jnp.int32), 0).sum()
      correct = jnp.sum(correct)
      if return_embeddings:
        return correct, zimg
      else:
        return correct, None

    self.devices = devices
    self.mesh = jax.sharding.Mesh(devices, ("devices",))

    self._embed_texts_p = jax.jit(
        embed_texts, out_shardings=NamedSharding(self.mesh, P()))
    self._count_correct_p = jax.jit(count_correct, static_argnums=(1,),
                                    out_shardings=NamedSharding(self.mesh, P()))
    self._count_p = jax.jit(jnp.sum,
                            out_shardings=NamedSharding(self.mesh, P()))
    self._all_gather_p = jax.jit(
        lambda x: x, out_shardings=NamedSharding(self.mesh, P()))

    self._compiled = set()
    assert async_delay > 0, f"async_delay must be >0, not {async_delay}"
    self._async_delay = async_delay
    logging.info("Initialized evaluator in %.1f seconds", time.monotonic() - t0)

  def _embed_texts(self, train_state, dataset_name):
    """Returns per-class averaged text embeddings."""
    t0 = time.monotonic()
    logging.info("Starting text embedding...")
    ns = []
    embeddings = []
    data = {"label": [], "mask": []}

    ds_b = input_pipeline.start_global(
        self.datasets[dataset_name]["texts"], self.devices)
    for batch in ds_b:
      ns.append(jax.device_get(self._count_p(batch["mask"])))
      if len(ns) >= self._async_delay and ns[-self._async_delay] == 0:
        break

      embeddings.append(jax.device_get(self._embed_texts_p(
          train_state, batch["labels"])))
      for name in data:
        data[name].append(jax.device_get(self._all_gather_p(batch[name])))

      if self._embed_texts_p not in self._compiled:
        logging.info("Compiled text embeddings in %.1fs", time.monotonic() - t0)
        t0 = time.monotonic()
        self._compiled.add(self._embed_texts_p)

    ns = np.array(ns)
    n = ns.sum()
    data["embedding"] = embeddings
    data = {k: np.concatenate(v, axis=0) for k, v in data.items()}
    mask = data.pop("mask").astype(bool)
    data = {k: v[mask] for k, v in data.items()}
    data["average_embedding"] = _average_embeddings(
        data["embedding"],
        labels=data["label"],
        num_classes=len(self.datasets[dataset_name]["class_names"]),
        normalize=True)

    logging.info("Embedded %s text in %d steps - ...%s", dataset_name, len(ns),
                 ns[-10:])
    logging.info("Totalling %d text in %.1fs", n, time.monotonic() - t0)
    logging.info("Total texts embeddings size %.1fM",
                 data["embedding"].nbytes / 1e6)
    return data

  def evaluate(self,
               train_state,
               dataset_name,
               *,
               return_embeddings=False):
    """Returns evaluation results."""
    texts = self._embed_texts(train_state, dataset_name)
    ztxt_p = texts["average_embedding"]
    ztxt_p = utils.reshard(ztxt_p, NamedSharding(self.mesh, P()))

    t0 = time.monotonic()
    logging.info("Starting image embedding...")

    ns = []
    embeddings = []
    corrects = []
    data = {"mask": [], "label": []} if return_embeddings else {}

    ds_b = input_pipeline.start_global(
        self.datasets[dataset_name]["images"], self.devices)
    for batch in ds_b:
      ns.append(jax.device_get(self._count_p(batch["mask"])))
      if len(ns) >= self._async_delay and ns[-self._async_delay] == 0:
        break

      labels = batch["label"]
      correct_p, embs_p = self._count_correct_p(
          train_state,
          return_embeddings,
          mask=batch["mask"],
          labels=labels,
          image=batch["image"],
          ztxt=ztxt_p,
      )
      corrects.append(jax.device_get(correct_p))
      if self._count_correct_p not in self._compiled:
        logging.info("Compiled image embeddings in %.1fs",
                     time.monotonic() - t0)
        t0 = time.monotonic()
        self._compiled.add(self._count_correct_p)

      if return_embeddings:
        embeddings.append(jax.device_get(self._all_gather_p(embs_p)))
      for name in data:
        data[name].append(jax.device_get(self._all_gather_p(batch[name])))

    ns = np.array(ns)
    n = ns.sum()
    correct = np.array(corrects).sum()

    logging.info("Embedded %s image in %d steps - ...%s", dataset_name, len(ns),
                 ns[-10:])
    logging.info("Totalling %d image in %.1fs", n, time.monotonic() - t0)
    ret = {
        "accuracy": correct / n,
        "correct": correct,
        "count": n,
    }
    logging.info("Dataset %s, results %s", dataset_name, ret)

    if return_embeddings:
      data["embedding"] = embeddings
      data = {k: np.concatenate(v, axis=0) for k, v in data.items()}
      logging.info("Total images embeddings size %.1fM",
                   data["embedding"].nbytes / 1e6)
      mask = data.pop("mask").astype(bool)
      ret["images"] = {k: v[mask] for k, v in data.items()}
      ret["texts"] = texts

    return ret

  def run(self, train_state):
    """Returns metrics."""
    return [(f"{dataset_name}_accuracy",
             self.evaluate(train_state, dataset_name)["accuracy"])
            for dataset_name in self.datasets]