File size: 17,522 Bytes
74e8f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 |
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Discriminative zero-shot classification evaluator.
"""
import functools
import time
from absl import logging
from big_vision import input_pipeline
from big_vision import utils
from big_vision.evaluators.proj.image_text import prompt_engineering
from big_vision.pp import ops_general # pylint: disable=unused-import
from big_vision.pp import ops_image # pylint: disable=unused-import
import big_vision.pp.builder as pp_builder
import jax
import jax.numpy as jnp
from jax.sharding import NamedSharding
from jax.sharding import PartitionSpec as P
import numpy as np
import tensorflow as tf
import tensorflow_datasets as tfds
# Temporary global flag to facilitate backwards compatability. Will be removed
# by the end of year 2023.
API = "jit"
DATASET_NAMES = ("imagenet2012", "cifar100", "oxford_iiit_pet")
DEFAULT_OVERRIDES = (
("imagenet2012", (
("class_names", "clip"),
("split", "validation"),
)),
)
def _with_infinite_padding(dataset):
"""Adds "infinite padding" to the dataset."""
filler_element = tf.nest.map_structure(
lambda spec: tf.zeros(spec.shape, spec.dtype)[None], dataset.element_spec)
filler_element["mask"] = [False]
filler_dataset = tf.data.Dataset.from_tensor_slices(filler_element)
dataset = dataset.map(
lambda features: dict(mask=True, **features),
num_parallel_calls=tf.data.experimental.AUTOTUNE)
return dataset.concatenate(filler_dataset.repeat(None))
# This is needed so retrieval_test can replace dataset info.
def _get_dataset_info(builder):
return builder.info
def prepare_datasets(img_dataset,
class_names,
*,
prompt_templates,
pp_img,
pp_txt,
cache_final=False,
pre_filter_fn=None,
class_name_offset=0):
"""Returns unbatched `ds_images, ds_texts` datasets."""
assert prompt_templates, "Must specify prompt templates (e.g. simply ['{}'])"
def expand_aliases(idx, class_name):
class_names = tf.strings.split(class_name, ",")
return tf.data.Dataset.from_tensor_slices((
tf.repeat([idx + class_name_offset], len(class_names), axis=0),
class_names,
))
def add_prompts(idx, class_name):
return tf.data.Dataset.from_tensor_slices({
"label": tf.repeat([idx], len(prompt_templates), axis=0),
"class_name": tf.repeat([class_name], len(prompt_templates), axis=0),
"prompt_template": prompt_templates,
})
def substitute_prompt(features):
parts = tf.strings.split(features["prompt_template"], "{}")
tf.debugging.assert_equal(len(parts), 2, features["prompt_template"])
return {
"label": features["label"],
"texts": tf.strings.join([parts[0], features["class_name"], parts[1]])
}
if pre_filter_fn:
img_dataset = img_dataset.filter(pre_filter_fn)
ds_images = img_dataset.map(
pp_builder.get_preprocess_fn(f"{pp_img}|keep('label', 'image')"))
ds_texts = tf.data.Dataset.from_tensor_slices(list(class_names)).enumerate(
).flat_map(expand_aliases).flat_map(add_prompts).map(substitute_prompt).map(
pp_builder.get_preprocess_fn(f"{pp_txt}|keep('label', 'labels')"))
if cache_final:
ds_images, ds_texts = ds_images.cache(), ds_texts.cache()
return ds_images, ds_texts
def _split_and_batch(dataset_name, data_dir, class_names, batch_size, split,
get_ds):
"""Splits dataset, calls `get_ds` and returns padded + batched datasets."""
assert not batch_size % jax.device_count(), (
f"batch_size={batch_size} % jax.device_count()={jax.device_count()}")
builder = tfds.builder(dataset_name, data_dir=data_dir)
# Split class names (last process gets remainder).
if len(class_names) < jax.process_count():
# See (internal link) for more details.
class_names += [""] * (jax.process_count() - len(class_names))
per_process = len(class_names) // jax.process_count()
class_name_offset = per_process * jax.process_index()
if jax.process_index() == jax.process_count() - 1:
class_names = class_names[class_name_offset:]
else:
class_names = class_names[class_name_offset:class_name_offset + per_process]
ds_images, ds_texts = get_ds(
builder.as_dataset(split=tfds.split_for_jax_process(split)),
class_names,
class_name_offset=class_name_offset)
return (
_with_infinite_padding(ds_images).batch(batch_size),
_with_infinite_padding(ds_texts).batch(batch_size),
)
def _average_embeddings(embeddings, *, labels, num_classes, normalize):
"""Computes per-class averages of `embeddings`."""
assert embeddings.ndim == 2, f"Expected {embeddings.ndim}==2"
assert labels.ndim == 1, f"Expected {labels.ndim}==1"
assert len(labels) == len(embeddings), (
f"Expected {len(labels)}=={len(embeddings)}")
byidx = [[] for _ in range(num_classes)]
for label, embedding in zip(labels, embeddings):
byidx[label].append(embedding)
missing = set(range(num_classes)) - set(
idx for idx, embs in enumerate(byidx) if len(embs))
assert not missing, f"Classes without embeddings: {missing}"
embeddings = [np.array(embedding).mean(axis=0) for embedding in byidx]
embeddings = np.stack(embeddings)
assert len(embeddings) == num_classes
if normalize:
embeddings /= 1e-8 + np.linalg.norm(embeddings, axis=1, keepdims=True)
return embeddings
class Evaluator:
"""Zero-shot classification evaluator."""
def __init__(self,
predict_fn,
*,
batch_size,
devices,
dataset_names=DATASET_NAMES,
data_dir=None,
class_names="dataset_info:label",
split="test",
prompt_templates="clip_paper",
canonicalize=True,
pp_img="resize(224)|value_range(-1,1)",
pp_txt="tokenize(max_len=16, eos='sticky', "
"pad_value=1, inkey='texts', outkey='labels')",
cache_final=False,
pre_filter_fn=None,
first_class_name_only=True,
dataset_overrides=DEFAULT_OVERRIDES,
async_delay=1):
"""Initializes a new zero-shot classification evaluator.
See `prepare_datasets()` for details on how the dataset is pre-processed.
Args:
predict_fn: Prediction function with signature
`zimg, ztxt, out = predict_fn(params, images, texts)`
batch_size: Global batch size.
devices: list of devices.
dataset_names: Names of TFDS datasets to evaluate on.
data_dir: Optional argument to `tfds.builder()`.
class_names: Usually specified as a string that is interpreted by
`prompt_engineering.get_class_names()` to look up class names.
Alternatively, this attribute can be a list of class names (using ","
to separate multiple aliases).
split: Which dataset split to use for evaluation.
prompt_templates: Specifies which prompt templates to use. See module
big_vision.evaluators.proj.image_text.prompte_engineering
for valid values.
canonicalize: Whether class names and prompt templates should be
canonicalized. See `prompt_engineering.py` for details.
pp_img: Preprocessing string for images. Preprocessed features should
contain key "image" with value that can be batched and is suitable for
the `images` argument of `predict_fn` input``.
pp_txt: Preprocessing string for texts. Can expect "texts" key as an input
(shape=[], dtype=string), and is expected to produce "labels" key that
is suitable for the `text` argument of `predict_fn` input.
cache_final: Wether preprocesse dataset should be cached.
pre_filter_fn: Predicate applied to the dataset for filtering records.
first_class_name_only: Whether only the first class name should be
considered (i.e. not using any aliases).
dataset_overrides: Mapping `dataset_name` to an optional dictionary that
can override parameters `dataset_name`, `data_dir`, `pp_img`, `pp_txt`,
`class_names`, `split`, `pre_filter_fn`, and the extra
`class_names_dataset_name`.
Works with tuple/dict of tuples/dicts.
async_delay: How many steps to wait before checking if all hosts have
finished their batch. A value > 1 allows for more parallelized
processing, but will results in more unnecessary steps with padded data.
"""
t0 = time.monotonic()
self.datasets = {}
self.prompt_templates = prompt_engineering.get_prompt_templates(
prompt_templates, canonicalize=canonicalize)
self._axis_name = "batch"
dataset_overrides = {k: dict(v) for k, v in dict(dataset_overrides).items()}
for dataset_name in dataset_names:
overrides = dataset_overrides.pop(dataset_name, {})
dataset_name_ = overrides.pop("dataset_name", dataset_name)
data_dir_ = overrides.pop("data_dir", data_dir)
class_names_dataset_name = overrides.pop("class_names_dataset_name",
dataset_name_)
class_names_ = overrides.pop("class_names", class_names)
class_names_ = prompt_engineering.get_class_names(
dataset_name=class_names_dataset_name,
source=class_names_,
canonicalize=canonicalize)
pp_img_ = overrides.pop("pp_img", pp_img)
pp_txt_ = overrides.pop("pp_txt", pp_txt)
cache_final_ = overrides.pop("cache_final", cache_final)
split_ = overrides.pop("split", split)
pre_filter_fn_ = overrides.pop("pre_filter_fn", pre_filter_fn)
prompt_templates_ = overrides.pop("prompt_templates", prompt_templates)
canonicalize_ = overrides.pop("canonicalize", canonicalize)
prompt_templates_ = prompt_engineering.get_prompt_templates(
prompt_templates_, canonicalize=canonicalize_)
assert not overrides, f"Unknown overrides {dataset_name}: {overrides}"
if first_class_name_only:
class_names_ = [name.split(",")[0] for name in class_names_]
ds_images, ds_texts = _split_and_batch(
dataset_name=dataset_name_,
data_dir=data_dir_,
class_names=class_names_,
batch_size=batch_size,
split=split_,
get_ds=functools.partial(
prepare_datasets,
pp_img=pp_img_,
pp_txt=pp_txt_,
cache_final=cache_final_,
pre_filter_fn=pre_filter_fn_,
prompt_templates=prompt_templates_))
self.datasets[dataset_name] = dict(
images=ds_images, texts=ds_texts, class_names=class_names_,
dataset_name=dataset_name_, split=split_)
assert not dataset_overrides, f"Extra overrides: {dataset_overrides}"
def embed_texts(train_state, texts):
"""Returns text embeddings."""
_, ztxt, _ = predict_fn(train_state, {"labels": texts})
return ztxt
def count_correct(train_state, return_embeddings, *, mask, labels, image,
ztxt):
"""Returns count of correct predictions (and optionally embeddings)."""
zimg, _, _ = predict_fn(train_state, {"image": image})
best_txt = (zimg @ ztxt.T).argmax(axis=1)
# labels has format [[1, -1, -1], [5, -1, -1], [7, 2, -1], ...]
# so here we count "any" correct, such that the counting matches the
# multilabel scenario described in "are we done with imagenet"
# (http://arxiv.org/abs/2006.07159) section 3.1
if labels.ndim == 1:
labels = labels[..., None]
assert labels.ndim == 2, labels.shape
matching = (best_txt[:, None] == labels).sum(axis=1)
correct = jnp.where(mask, (matching > 0).astype(jnp.int32), 0).sum()
correct = jnp.sum(correct)
if return_embeddings:
return correct, zimg
else:
return correct, None
self.devices = devices
self.mesh = jax.sharding.Mesh(devices, ("devices",))
self._embed_texts_p = jax.jit(
embed_texts, out_shardings=NamedSharding(self.mesh, P()))
self._count_correct_p = jax.jit(count_correct, static_argnums=(1,),
out_shardings=NamedSharding(self.mesh, P()))
self._count_p = jax.jit(jnp.sum,
out_shardings=NamedSharding(self.mesh, P()))
self._all_gather_p = jax.jit(
lambda x: x, out_shardings=NamedSharding(self.mesh, P()))
self._compiled = set()
assert async_delay > 0, f"async_delay must be >0, not {async_delay}"
self._async_delay = async_delay
logging.info("Initialized evaluator in %.1f seconds", time.monotonic() - t0)
def _embed_texts(self, train_state, dataset_name):
"""Returns per-class averaged text embeddings."""
t0 = time.monotonic()
logging.info("Starting text embedding...")
ns = []
embeddings = []
data = {"label": [], "mask": []}
ds_b = input_pipeline.start_global(
self.datasets[dataset_name]["texts"], self.devices)
for batch in ds_b:
ns.append(jax.device_get(self._count_p(batch["mask"])))
if len(ns) >= self._async_delay and ns[-self._async_delay] == 0:
break
embeddings.append(jax.device_get(self._embed_texts_p(
train_state, batch["labels"])))
for name in data:
data[name].append(jax.device_get(self._all_gather_p(batch[name])))
if self._embed_texts_p not in self._compiled:
logging.info("Compiled text embeddings in %.1fs", time.monotonic() - t0)
t0 = time.monotonic()
self._compiled.add(self._embed_texts_p)
ns = np.array(ns)
n = ns.sum()
data["embedding"] = embeddings
data = {k: np.concatenate(v, axis=0) for k, v in data.items()}
mask = data.pop("mask").astype(bool)
data = {k: v[mask] for k, v in data.items()}
data["average_embedding"] = _average_embeddings(
data["embedding"],
labels=data["label"],
num_classes=len(self.datasets[dataset_name]["class_names"]),
normalize=True)
logging.info("Embedded %s text in %d steps - ...%s", dataset_name, len(ns),
ns[-10:])
logging.info("Totalling %d text in %.1fs", n, time.monotonic() - t0)
logging.info("Total texts embeddings size %.1fM",
data["embedding"].nbytes / 1e6)
return data
def evaluate(self,
train_state,
dataset_name,
*,
return_embeddings=False):
"""Returns evaluation results."""
texts = self._embed_texts(train_state, dataset_name)
ztxt_p = texts["average_embedding"]
ztxt_p = utils.reshard(ztxt_p, NamedSharding(self.mesh, P()))
t0 = time.monotonic()
logging.info("Starting image embedding...")
ns = []
embeddings = []
corrects = []
data = {"mask": [], "label": []} if return_embeddings else {}
ds_b = input_pipeline.start_global(
self.datasets[dataset_name]["images"], self.devices)
for batch in ds_b:
ns.append(jax.device_get(self._count_p(batch["mask"])))
if len(ns) >= self._async_delay and ns[-self._async_delay] == 0:
break
labels = batch["label"]
correct_p, embs_p = self._count_correct_p(
train_state,
return_embeddings,
mask=batch["mask"],
labels=labels,
image=batch["image"],
ztxt=ztxt_p,
)
corrects.append(jax.device_get(correct_p))
if self._count_correct_p not in self._compiled:
logging.info("Compiled image embeddings in %.1fs",
time.monotonic() - t0)
t0 = time.monotonic()
self._compiled.add(self._count_correct_p)
if return_embeddings:
embeddings.append(jax.device_get(self._all_gather_p(embs_p)))
for name in data:
data[name].append(jax.device_get(self._all_gather_p(batch[name])))
ns = np.array(ns)
n = ns.sum()
correct = np.array(corrects).sum()
logging.info("Embedded %s image in %d steps - ...%s", dataset_name, len(ns),
ns[-10:])
logging.info("Totalling %d image in %.1fs", n, time.monotonic() - t0)
ret = {
"accuracy": correct / n,
"correct": correct,
"count": n,
}
logging.info("Dataset %s, results %s", dataset_name, ret)
if return_embeddings:
data["embedding"] = embeddings
data = {k: np.concatenate(v, axis=0) for k, v in data.items()}
logging.info("Total images embeddings size %.1fM",
data["embedding"].nbytes / 1e6)
mask = data.pop("mask").astype(bool)
ret["images"] = {k: v[mask] for k, v in data.items()}
ret["texts"] = texts
return ret
def run(self, train_state):
"""Returns metrics."""
return [(f"{dataset_name}_accuracy",
self.evaluate(train_state, dataset_name)["accuracy"])
for dataset_name in self.datasets]
|