File size: 7,713 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Tests for discriminative_classifier."""

from unittest import mock

from big_vision.evaluators.proj.image_text import discriminative_classifier
from big_vision.pp import ops_general  # pylint: disable=unused-import
from big_vision.pp import ops_image  # pylint: disable=unused-import
from big_vision.pp.registry import Registry
import flax.linen as nn
import jax
import jax.numpy as jnp
import numpy as np
import tensorflow as tf
import tensorflow_datasets as tfds


@Registry.register("preprocess_ops.test_texts2labels")
def _get_test_texts2labels():

  def pp(features):
    features["labels"] = tf.strings.to_number(features["texts"])
    return features

  return pp


@Registry.register("preprocess_ops.copy_from")
def _get_copy_from(**key_map):

  def copy_from(d):
    d = dict(d)
    for k1, k2 in key_map.items():
      d[k1] = d[k2]
    return d

  return copy_from


class _Model(nn.Module):

  @nn.compact
  def __call__(self, image, texts):
    self.param("x", lambda _: 0.)

    def z(x):
      if x is not None:
        # Note that the returned vector is most similar with other vectors
        # generated from the same underlying `x[:]`.
        return jnp.stack([jnp.cos(x / 10.), jnp.sin(x / 10.)]).T

    if texts is not None:
      texts %= 5  # For testing `pre_filter_fn` below.
    return z(image), z(texts), None


  class DiscriminativeClassifierTest(tf.test.TestCase):

  def test_prepare_datasets(self):

    def generator():
      yield {
          "image": tf.ones([5, 5, 3], tf.float32),
          "label": 1,
      }
      yield {
          "image": tf.ones([4, 4, 3], tf.float32),
          "label": 2,
      }

    ds = tf.data.Dataset.from_generator(
        generator,
        output_signature={
            "image": tf.TensorSpec(shape=[None, None, 3], dtype=tf.float32),
            "label": tf.TensorSpec(shape=[], dtype=tf.int64),
        })
    class_names = [
        "class1,class1a",
        "class2",
    ]
    prompt_templates = [
        "test {}",
        "test {} test",
    ]
    ds_img, ds_txt = discriminative_classifier.prepare_datasets(
        ds,
        class_names,
        prompt_templates=prompt_templates,
        pp_img="resize(2)",
        pp_txt="copy_from(labels='texts')",
    )

    it_img = iter(ds_img)
    batch = next(it_img)
    self.assertAllEqual(1, batch["label"])
    self.assertAllEqual(tf.ones([2, 2, 3]), batch["image"])
    batch = next(it_img)
    self.assertAllEqual(2, batch["label"])
    self.assertAllEqual(tf.ones([2, 2, 3]), batch["image"])

    it_txt = iter(ds_txt)
    batch = next(it_txt)
    self.assertAllEqual(0, batch["label"])
    self.assertAllEqual("test class1", batch["labels"])
    batch = next(it_txt)
    self.assertAllEqual(0, batch["label"])
    self.assertAllEqual("test class1 test", batch["labels"])
    batch = next(it_txt)
    self.assertAllEqual(0, batch["label"])
    self.assertAllEqual("test class1a", batch["labels"])
    batch = next(it_txt)
    self.assertAllEqual(0, batch["label"])
    self.assertAllEqual("test class1a test", batch["labels"])
    batch = next(it_txt)
    self.assertAllEqual(1, batch["label"])
    self.assertAllEqual("test class2", batch["labels"])
    batch = next(it_txt)
    self.assertAllEqual(1, batch["label"])
    self.assertAllEqual("test class2 test", batch["labels"])

  def test_average_embeddings(self):
    self.assertAllEqual(jnp.array([
        [2.], [4.], [8.],
    ]), discriminative_classifier._average_embeddings(
        embeddings=jnp.array([
            1., 3., 3., 1.,  # label1
            8., 0.,  # label2
            32., 0., 0., 0.,  # label3
        ])[..., None],
        labels=jnp.array([
            0, 0,  # label1
            0, 0,  # label1 (alias)
            1, 1,  # label2
            2, 2,  # label3
            2, 2,  # label3 (alias)
        ], jnp.int32),
        num_classes=3, normalize=False))
    self.assertAllEqual(
        jnp.array([
            [2**-.5, 2**-.5],
        ]),
        discriminative_classifier._average_embeddings(
            embeddings=jnp.array([[2., 2.]]),
            labels=jnp.array([0], jnp.int32),
            num_classes=1,
            normalize=True))

  @mock.patch("big_vision.evaluators.proj."
              "image_text.prompt_engineering.get_class_names")
  @mock.patch("big_vision.evaluators.proj."
              "image_text.prompt_engineering.get_prompt_templates")
  @mock.patch("big_vision.evaluators.proj."
              "image_text.discriminative_classifier._get_dataset_info")
  def test_evaluate(self, get_dataset_info_mock, get_prompt_templates_mock,
                    get_class_names_mock):
    per_device_batch_size = 10  # Make sure we have some unfiltered examples.
    global_batch_size = per_device_batch_size * jax.device_count()
    per_host_num_examples = int(
        np.ceil(global_batch_size / jax.process_count()))
    splits = {
        "test":
            tfds.core.SplitInfo(
                name="test", shard_lengths=[per_host_num_examples], num_bytes=0)
    }

    model = _Model()
    params = model.init(jax.random.PRNGKey(0), None, None)["params"]

    prompt_templates = [
        "test prompt 1 {}",
        "test prompt 2 {}",
    ]
    class_names = [
        f"test_class_{i}" for i in range(10)
    ]

    get_prompt_templates_mock.return_value = prompt_templates
    get_class_names_mock.return_value = class_names
    get_dataset_info_mock.return_value.splits = splits

    def pre_filter_fn(features):
      return features["label"] < 5  # matches `texts %= 5` above

    dataset_name = "cifar10_test"
    with tfds.testing.mock_data(num_examples=per_host_num_examples):
      evaluator = discriminative_classifier.Evaluator(
          lambda p, b: model.apply({"params": p},
                                   b.get("image", None),
                                   b.get("labels", None)),
          dataset_names=[dataset_name],
          prompt_templates="test_prompts",
          batch_size=global_batch_size,
          devices=jax.devices(),
          pp_img="copy_from(image='label')",
          pp_txt="copy_from(labels='label')",
          dataset_overrides={
              dataset_name: {
                  "dataset_name": "cifar10",
                  "class_names": "test_classes",
                  "pre_filter_fn": pre_filter_fn,
              }
          },
          first_class_name_only=True,
      )
      results = evaluator.evaluate(
          params,
          dataset_name,
          return_embeddings=True)
      metrics = dict(evaluator.run(params))

    # Assert all examples were processed.
    self.assertLen(results["texts"]["embedding"],
                   len(class_names) * len(prompt_templates))
    self.assertLen(results["texts"]["average_embedding"], len(class_names))
    self.assertAllEqual(
        sorted(results["texts"]["label"]),
        [0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9])
    # Note that above model makes perfect predictions by design.
    self.assertEqual(1.0, results["accuracy"])
    self.assertEqual(1.0, metrics[f"{dataset_name}_accuracy"])


if __name__ == "__main__":
  tf.test.main()