File size: 7,713 Bytes
74e8f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for discriminative_classifier."""
from unittest import mock
from big_vision.evaluators.proj.image_text import discriminative_classifier
from big_vision.pp import ops_general # pylint: disable=unused-import
from big_vision.pp import ops_image # pylint: disable=unused-import
from big_vision.pp.registry import Registry
import flax.linen as nn
import jax
import jax.numpy as jnp
import numpy as np
import tensorflow as tf
import tensorflow_datasets as tfds
@Registry.register("preprocess_ops.test_texts2labels")
def _get_test_texts2labels():
def pp(features):
features["labels"] = tf.strings.to_number(features["texts"])
return features
return pp
@Registry.register("preprocess_ops.copy_from")
def _get_copy_from(**key_map):
def copy_from(d):
d = dict(d)
for k1, k2 in key_map.items():
d[k1] = d[k2]
return d
return copy_from
class _Model(nn.Module):
@nn.compact
def __call__(self, image, texts):
self.param("x", lambda _: 0.)
def z(x):
if x is not None:
# Note that the returned vector is most similar with other vectors
# generated from the same underlying `x[:]`.
return jnp.stack([jnp.cos(x / 10.), jnp.sin(x / 10.)]).T
if texts is not None:
texts %= 5 # For testing `pre_filter_fn` below.
return z(image), z(texts), None
class DiscriminativeClassifierTest(tf.test.TestCase):
def test_prepare_datasets(self):
def generator():
yield {
"image": tf.ones([5, 5, 3], tf.float32),
"label": 1,
}
yield {
"image": tf.ones([4, 4, 3], tf.float32),
"label": 2,
}
ds = tf.data.Dataset.from_generator(
generator,
output_signature={
"image": tf.TensorSpec(shape=[None, None, 3], dtype=tf.float32),
"label": tf.TensorSpec(shape=[], dtype=tf.int64),
})
class_names = [
"class1,class1a",
"class2",
]
prompt_templates = [
"test {}",
"test {} test",
]
ds_img, ds_txt = discriminative_classifier.prepare_datasets(
ds,
class_names,
prompt_templates=prompt_templates,
pp_img="resize(2)",
pp_txt="copy_from(labels='texts')",
)
it_img = iter(ds_img)
batch = next(it_img)
self.assertAllEqual(1, batch["label"])
self.assertAllEqual(tf.ones([2, 2, 3]), batch["image"])
batch = next(it_img)
self.assertAllEqual(2, batch["label"])
self.assertAllEqual(tf.ones([2, 2, 3]), batch["image"])
it_txt = iter(ds_txt)
batch = next(it_txt)
self.assertAllEqual(0, batch["label"])
self.assertAllEqual("test class1", batch["labels"])
batch = next(it_txt)
self.assertAllEqual(0, batch["label"])
self.assertAllEqual("test class1 test", batch["labels"])
batch = next(it_txt)
self.assertAllEqual(0, batch["label"])
self.assertAllEqual("test class1a", batch["labels"])
batch = next(it_txt)
self.assertAllEqual(0, batch["label"])
self.assertAllEqual("test class1a test", batch["labels"])
batch = next(it_txt)
self.assertAllEqual(1, batch["label"])
self.assertAllEqual("test class2", batch["labels"])
batch = next(it_txt)
self.assertAllEqual(1, batch["label"])
self.assertAllEqual("test class2 test", batch["labels"])
def test_average_embeddings(self):
self.assertAllEqual(jnp.array([
[2.], [4.], [8.],
]), discriminative_classifier._average_embeddings(
embeddings=jnp.array([
1., 3., 3., 1., # label1
8., 0., # label2
32., 0., 0., 0., # label3
])[..., None],
labels=jnp.array([
0, 0, # label1
0, 0, # label1 (alias)
1, 1, # label2
2, 2, # label3
2, 2, # label3 (alias)
], jnp.int32),
num_classes=3, normalize=False))
self.assertAllEqual(
jnp.array([
[2**-.5, 2**-.5],
]),
discriminative_classifier._average_embeddings(
embeddings=jnp.array([[2., 2.]]),
labels=jnp.array([0], jnp.int32),
num_classes=1,
normalize=True))
@mock.patch("big_vision.evaluators.proj."
"image_text.prompt_engineering.get_class_names")
@mock.patch("big_vision.evaluators.proj."
"image_text.prompt_engineering.get_prompt_templates")
@mock.patch("big_vision.evaluators.proj."
"image_text.discriminative_classifier._get_dataset_info")
def test_evaluate(self, get_dataset_info_mock, get_prompt_templates_mock,
get_class_names_mock):
per_device_batch_size = 10 # Make sure we have some unfiltered examples.
global_batch_size = per_device_batch_size * jax.device_count()
per_host_num_examples = int(
np.ceil(global_batch_size / jax.process_count()))
splits = {
"test":
tfds.core.SplitInfo(
name="test", shard_lengths=[per_host_num_examples], num_bytes=0)
}
model = _Model()
params = model.init(jax.random.PRNGKey(0), None, None)["params"]
prompt_templates = [
"test prompt 1 {}",
"test prompt 2 {}",
]
class_names = [
f"test_class_{i}" for i in range(10)
]
get_prompt_templates_mock.return_value = prompt_templates
get_class_names_mock.return_value = class_names
get_dataset_info_mock.return_value.splits = splits
def pre_filter_fn(features):
return features["label"] < 5 # matches `texts %= 5` above
dataset_name = "cifar10_test"
with tfds.testing.mock_data(num_examples=per_host_num_examples):
evaluator = discriminative_classifier.Evaluator(
lambda p, b: model.apply({"params": p},
b.get("image", None),
b.get("labels", None)),
dataset_names=[dataset_name],
prompt_templates="test_prompts",
batch_size=global_batch_size,
devices=jax.devices(),
pp_img="copy_from(image='label')",
pp_txt="copy_from(labels='label')",
dataset_overrides={
dataset_name: {
"dataset_name": "cifar10",
"class_names": "test_classes",
"pre_filter_fn": pre_filter_fn,
}
},
first_class_name_only=True,
)
results = evaluator.evaluate(
params,
dataset_name,
return_embeddings=True)
metrics = dict(evaluator.run(params))
# Assert all examples were processed.
self.assertLen(results["texts"]["embedding"],
len(class_names) * len(prompt_templates))
self.assertLen(results["texts"]["average_embedding"], len(class_names))
self.assertAllEqual(
sorted(results["texts"]["label"]),
[0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9])
# Note that above model makes perfect predictions by design.
self.assertEqual(1.0, results["accuracy"])
self.assertEqual(1.0, metrics[f"{dataset_name}_accuracy"])
if __name__ == "__main__":
tf.test.main()
|