File size: 5,331 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Evaluator for caption generation metrics used for the MS COCO dataset."""
import collections
import functools
import os
import tempfile

import big_vision.evaluators.common as c
import big_vision.input_pipeline
import big_vision.pp.builder
import big_vision.pp.tokenizer
import big_vision.utils as u

from pycocoevalcap.bleu import bleu
from pycocoevalcap.cider import cider
from pycocoevalcap.meteor import meteor
from pycocoevalcap.rouge import rouge
from pycocoevalcap.spice import spice
from pycocoevalcap.tokenizer import ptbtokenizer

import jax

from tensorflow.io import gfile

# Temporary global flag to facilitate backwards compatability. Will be removed
# by the end of year 2023.
API = "jit"


class Evaluator:
  """Evaluator for caption generation metrics used for the MS COCO dataset.

  See https://arxiv.org/pdf/1504.00325.pdf or the repository implementing it
  https://github.com/tylin/coco-caption for details on the metrics. This code
  uses the python3 pip package from: https://github.com/salaniz/pycocoevalcap

  Note that both the model caption and the ground truth reference captions are
  further processed with the PTBTokenizer before computing scores.

  `predict_fn` accepts arbitrary dictionaries of parameters and data, where
  the data dictionary is produced by the `pp_fn` op. It is expected to output a
  dict containing tokenized captions.

  `pp_fn` must have fields: "image/id" and "captions".
  """

  def __init__(
      self, predict_fn, tokenizer=None,
      metrics=("cider",),  # Default to only cider. We often just look at that.
      preds_outfile="{workdir}/{name}_{split}_preds.json",
      annot_outfile="{workdir}/{name}_{split}_annotations.json",
      *, data, devices, **kw
  ):
    self.get_data_iter, self.steps = c.eval_input_pipeline(
        keep_on_cpu={"image/id", "captions"}, data=data, devices=devices, **kw)

    self.preds_outfile = c.resolve_outfile(
        preds_outfile, name=data.get("name"), split=data.get("split"))
    self.annot_outfile = c.resolve_outfile(
        annot_outfile, name=data.get("name"), split=data.get("split"))

    self.metrics = metrics
    self.tok = big_vision.pp.tokenizer.get_tokenizer(tokenizer)
    self.decode = functools.partial(
        predict_fn, devices=devices, eos_token=self.tok.eos_token)

  def run(self, train_state):
    """Run eval."""
    gts = []
    res = []

    for _, batch in zip(range(self.steps), self.get_data_iter()):
      # (batch, seqlen) array of decoded generated tokens.
      tokens = self.decode(train_state, batch)

      # (local_batch,)
      tokens = u.get_local_slice_from_fsarray(tokens)
      ex_masks = u.get_local_slice_from_fsarray(batch["_mask"])

      image_ids = batch["image/id"][ex_masks]
      pred_captions = self.tok.to_str(tokens[ex_masks])

      for image_id, caption in zip(image_ids, pred_captions):
        res.append({"image_id": image_id.item(), "caption": caption})

      for image_id, captions in zip(image_ids, batch["captions"]):
        for caption in captions:
          gts.append({"image_id": image_id.item(), "caption": caption.item()})

    # Write model outputs following: https://cocodataset.org/#format-results
    # Use same format for gt although that is not the usual format for them.
    res = c.multiprocess_write_json(self.preds_outfile, res)
    gts = c.multiprocess_write_json(self.annot_outfile, gts)

    if jax.process_index():  # Host0 gets all preds and does eval.
      return

    outs = self.evaluate(gts, res)
    for key, score in outs.items():
      yield key, score

  def evaluate(self, gt_annotations, res_annotations):
    """Creates scorers and run evaluation."""
    scorers = {
        "rouge": rouge.Rouge,
        "cider": cider.Cider,
        "bleu-4": bleu.Bleu,
        "spice": spice.Spice,
        "meteor": meteor.Meteor,
    }

    # Reformat gts and res from [{"image_id": int|str, "caption": str}] to
    # {int_image_id: [{"caption": str}]} as expected by tokenizer and scorers.
    # Note there are multiple reference captions for the ground truth but only
    # one for the model predictions.
    iid_map = collections.defaultdict(lambda: len(iid_map))
    res = {iid_map[x["image_id"]]: [x] for x in res_annotations}
    gts = collections.defaultdict(list)
    for x in gt_annotations:
      gts[iid_map[x["image_id"]]].append(x)
    assert sorted(gts.keys()) == sorted(res.keys())

    # Tokenize captions and predictions using coco tokenizer.
    coco_tokenizer = ptbtokenizer.PTBTokenizer()
    gts = coco_tokenizer.tokenize(gts)
    res = coco_tokenizer.tokenize(res)

    scores = {}
    for metric in self.metrics:
      scorer = scorers[metric]()
      scores[metric], _ = scorer.compute_score(gts, res)
    return scores