File size: 6,959 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Evaluator for simple VQA variants with per answer-type metrics.

According to the (A-)OKVAQ papers, the eval for these datasets should follow
VQAv2. But here we don't track different answer-types, and don't do any
leave-one-out averaging, as this isn't done in the official implementation at
https://github.com/allenai/aokvqa/blob/main/evaluation/eval_predictions.py
either.
"""

import functools

import big_vision.evaluators.common as c
import big_vision.pp.tokenizer
import big_vision.utils as u
import editdistance


# Temporary global flag to facilitate backwards compatability. Will be removed
# by the end of year 2023.
API = "jit"

QUESTION_TYPES = ("comp", "count", "presence", "rural_urban", "area")

ACC_SUBSETS = (
    ("nonum", ("comp", "presence", "rural_urban")),  # rsvqa_lr
    ("nonum", ("comp", "presence")),  # rsvqa_hr
)


class Evaluator:
  """Evaluator for simple VQA tasks."""

  def __init__(
      self, predict_fn, tokenizer, to_lower=False,
      outfile="{workdir}/{split}.json",
      *, data, devices, **kw):
    self.get_data_iter, self.steps = c.eval_input_pipeline(
        keep_on_cpu={"answers", "answer", "question_id", "question_type"},
        data=data, devices=devices, **kw)

    self.outfile = c.resolve_outfile(outfile, split=data.get("split"))

    # We'll need the tokenizer to detokenize the model outputs later.
    self.tok = big_vision.pp.tokenizer.get_tokenizer(tokenizer)
    self.postproc = (lambda s: s.lower()) if to_lower else lambda s: s
    self.decode = functools.partial(
        predict_fn, devices=devices, eos_token=self.tok.eos_token)

  def run(self, train_state):
    """Does one evaluation run, yields metrics."""

    accuracies = []
    accuracies_any = []
    counts_per_type = {t: 0 for t in QUESTION_TYPES}
    accuracies_per_type = {t: [] for t in QUESTION_TYPES}
    anls_values = []
    json_out = []
    for _, batch in zip(range(self.steps), self.get_data_iter()):
      # (batch, seqlen) array of decoded generated tokens.
      tokens = self.decode(train_state, batch)  # (B,L,E)

      # (local_batch,) that indicates padding examples (0) vs real examples (1).
      tokens = u.get_local_slice_from_fsarray(tokens)
      ex_masks = u.get_local_slice_from_fsarray(batch["_mask"])

      # Turn predictions into texts and then scores, one by one.
      for i in range(len(tokens)):
        if ex_masks[i] == 0:  # Skip last-batch padding examples
          continue

        answer = self.postproc(self.tok.to_str(tokens[i], stop_at_eos=True))

        # Now we have two commonly used VQA evaluation modes:
        if "answer" in batch:
          # single GT (eg ocrvqa): just compare to that answer, done.
          gt = self.postproc(batch["answer"][i])
          gts = [gt]
          accuracies.append(float(answer == gt))
          accuracies_any.append(float(answer == gt))
          anls_values.append(anls_metric(gt, answer))
        elif "answers" in batch and (gt_answers := batch["answers"][i]).size:
          # multiple GTs (eg okvqa): introduced by VQA, compare to each of them
          # with a threshold, see also: https://visualqa.org/evaluation.html
          gts = [self.postproc(a) for a in gt_answers]
          num_match = sum([answer == gt for gt in gts])
          accuracies.append(min(1.0, num_match / 3.0))
          accuracies_any.append(min(1.0, float(num_match)))
          anls_values.append(max(anls_metric(gt, answer) for gt in gts))
          accuracies_per_type[batch["question_type"][i]].append(
              accuracies_any[-1]
          )
          counts_per_type[batch["question_type"][i]] += 1
        else:
          gts = []

        json_out.append({
            "question_id": batch["question_id"][i].item(),
            "answer": answer} | ({"gts": gts} if gts else {}))

    # At this point `accuracies` is a list of per-example scores. However,
    # remember that each host holds a different subset of the examples! So if
    # we were to just return the mean accuracy here, we would effectively only
    # have evaluated on the main host's (who writes metrics) subset!
    # So now, we need to compute global means.
    # There is one more caveat: `process_sum` needs the summands on each host
    # to have the same size. So we either need to include dummy values for
    # the padding examples (last batch, annoying), or we only sum scalars as in
    # sufficient statistics, which we do here.
    sum_accs, sum_accs_any, sum_anls, num_accs, num = c.process_sum(
        [sum(accuracies), sum(accuracies_any), sum(anls_values),
         len(accuracies), len(json_out)])

    sum_accs_per_type, sum_cnts_per_type = c.process_sum(
        [{k: sum(v) for k, v in accuracies_per_type.items()}, counts_per_type]
    )

    # Yielding metric_name, value means logging the metric.
    if num_accs:
      yield "acc", sum_accs / num_accs
      yield "acc_any", sum_accs_any / num_accs  # Overall Accuracy (OA).
      yield "anls", sum_anls / num_accs
      acc_types = {}
      for k, v in sum_accs_per_type.items():
        if sum_cnts_per_type[k]:
          acc_types[k] = v / sum_cnts_per_type[k]
          yield f"acc_{k}", acc_types[k]
      yield "acc_avg", sum(acc_types.values()) / len(acc_types)  # Avg acc (AA).
      for postfix, types in ACC_SUBSETS:
        if all(t in acc_types for t in types):
          yield f"acc_avg_{postfix}", sum(
              [v for k, v in acc_types.items() if k in types]
          ) / len(types)  # Average accuracy per question types subset.
    yield "num", num  # Just for sanity checks.
    c.multiprocess_write_json(self.outfile, json_out)


def anls_metric(target: str, prediction: str, theta: float = 0.5):
  """Calculates ANLS for DocVQA.

  There does not seem to be an official evaluation script.
  Public implementation on which this implementation is based:
  https://github.com/herobd/layoutlmv2/blob/main/eval_docvqa.py#L92

  Original paper (see Eq 1): https://arxiv.org/pdf/1907.00490.pdf

  Args:
    target: Target string.
    prediction: Predicted string.
    theta: Filter threshold set to 0.5 for DocVQA.

  Returns:
    ANLS score.
  """
  if target:
    edit_distance = editdistance.eval(target, prediction)
    normalized_ld = edit_distance / max(len(target), len(prediction))
    return 1 - normalized_ld if normalized_ld < theta else 0
  else:
    return float(prediction == "")