File size: 6,959 Bytes
74e8f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Evaluator for simple VQA variants with per answer-type metrics.
According to the (A-)OKVAQ papers, the eval for these datasets should follow
VQAv2. But here we don't track different answer-types, and don't do any
leave-one-out averaging, as this isn't done in the official implementation at
https://github.com/allenai/aokvqa/blob/main/evaluation/eval_predictions.py
either.
"""
import functools
import big_vision.evaluators.common as c
import big_vision.pp.tokenizer
import big_vision.utils as u
import editdistance
# Temporary global flag to facilitate backwards compatability. Will be removed
# by the end of year 2023.
API = "jit"
QUESTION_TYPES = ("comp", "count", "presence", "rural_urban", "area")
ACC_SUBSETS = (
("nonum", ("comp", "presence", "rural_urban")), # rsvqa_lr
("nonum", ("comp", "presence")), # rsvqa_hr
)
class Evaluator:
"""Evaluator for simple VQA tasks."""
def __init__(
self, predict_fn, tokenizer, to_lower=False,
outfile="{workdir}/{split}.json",
*, data, devices, **kw):
self.get_data_iter, self.steps = c.eval_input_pipeline(
keep_on_cpu={"answers", "answer", "question_id", "question_type"},
data=data, devices=devices, **kw)
self.outfile = c.resolve_outfile(outfile, split=data.get("split"))
# We'll need the tokenizer to detokenize the model outputs later.
self.tok = big_vision.pp.tokenizer.get_tokenizer(tokenizer)
self.postproc = (lambda s: s.lower()) if to_lower else lambda s: s
self.decode = functools.partial(
predict_fn, devices=devices, eos_token=self.tok.eos_token)
def run(self, train_state):
"""Does one evaluation run, yields metrics."""
accuracies = []
accuracies_any = []
counts_per_type = {t: 0 for t in QUESTION_TYPES}
accuracies_per_type = {t: [] for t in QUESTION_TYPES}
anls_values = []
json_out = []
for _, batch in zip(range(self.steps), self.get_data_iter()):
# (batch, seqlen) array of decoded generated tokens.
tokens = self.decode(train_state, batch) # (B,L,E)
# (local_batch,) that indicates padding examples (0) vs real examples (1).
tokens = u.get_local_slice_from_fsarray(tokens)
ex_masks = u.get_local_slice_from_fsarray(batch["_mask"])
# Turn predictions into texts and then scores, one by one.
for i in range(len(tokens)):
if ex_masks[i] == 0: # Skip last-batch padding examples
continue
answer = self.postproc(self.tok.to_str(tokens[i], stop_at_eos=True))
# Now we have two commonly used VQA evaluation modes:
if "answer" in batch:
# single GT (eg ocrvqa): just compare to that answer, done.
gt = self.postproc(batch["answer"][i])
gts = [gt]
accuracies.append(float(answer == gt))
accuracies_any.append(float(answer == gt))
anls_values.append(anls_metric(gt, answer))
elif "answers" in batch and (gt_answers := batch["answers"][i]).size:
# multiple GTs (eg okvqa): introduced by VQA, compare to each of them
# with a threshold, see also: https://visualqa.org/evaluation.html
gts = [self.postproc(a) for a in gt_answers]
num_match = sum([answer == gt for gt in gts])
accuracies.append(min(1.0, num_match / 3.0))
accuracies_any.append(min(1.0, float(num_match)))
anls_values.append(max(anls_metric(gt, answer) for gt in gts))
accuracies_per_type[batch["question_type"][i]].append(
accuracies_any[-1]
)
counts_per_type[batch["question_type"][i]] += 1
else:
gts = []
json_out.append({
"question_id": batch["question_id"][i].item(),
"answer": answer} | ({"gts": gts} if gts else {}))
# At this point `accuracies` is a list of per-example scores. However,
# remember that each host holds a different subset of the examples! So if
# we were to just return the mean accuracy here, we would effectively only
# have evaluated on the main host's (who writes metrics) subset!
# So now, we need to compute global means.
# There is one more caveat: `process_sum` needs the summands on each host
# to have the same size. So we either need to include dummy values for
# the padding examples (last batch, annoying), or we only sum scalars as in
# sufficient statistics, which we do here.
sum_accs, sum_accs_any, sum_anls, num_accs, num = c.process_sum(
[sum(accuracies), sum(accuracies_any), sum(anls_values),
len(accuracies), len(json_out)])
sum_accs_per_type, sum_cnts_per_type = c.process_sum(
[{k: sum(v) for k, v in accuracies_per_type.items()}, counts_per_type]
)
# Yielding metric_name, value means logging the metric.
if num_accs:
yield "acc", sum_accs / num_accs
yield "acc_any", sum_accs_any / num_accs # Overall Accuracy (OA).
yield "anls", sum_anls / num_accs
acc_types = {}
for k, v in sum_accs_per_type.items():
if sum_cnts_per_type[k]:
acc_types[k] = v / sum_cnts_per_type[k]
yield f"acc_{k}", acc_types[k]
yield "acc_avg", sum(acc_types.values()) / len(acc_types) # Avg acc (AA).
for postfix, types in ACC_SUBSETS:
if all(t in acc_types for t in types):
yield f"acc_avg_{postfix}", sum(
[v for k, v in acc_types.items() if k in types]
) / len(types) # Average accuracy per question types subset.
yield "num", num # Just for sanity checks.
c.multiprocess_write_json(self.outfile, json_out)
def anls_metric(target: str, prediction: str, theta: float = 0.5):
"""Calculates ANLS for DocVQA.
There does not seem to be an official evaluation script.
Public implementation on which this implementation is based:
https://github.com/herobd/layoutlmv2/blob/main/eval_docvqa.py#L92
Original paper (see Eq 1): https://arxiv.org/pdf/1907.00490.pdf
Args:
target: Target string.
prediction: Predicted string.
theta: Filter threshold set to 0.5 for DocVQA.
Returns:
ANLS score.
"""
if target:
edit_distance = editdistance.eval(target, prediction)
normalized_ld = edit_distance / max(len(target), len(prediction))
return 1 - normalized_ld if normalized_ld < theta else 0
else:
return float(prediction == "")
|