File size: 8,870 Bytes
74e8f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Evaluator for segmentation."""
import functools
import big_vision.evaluators.common as c
import big_vision.pp.tokenizer
import big_vision.utils as u
import flax.linen as nn
import jax
import jax.numpy as jnp
import numpy as np
import PIL.Image
from tensorflow.io import gfile
# Temporary global flag to facilitate backwards compatability. Will be removed
# by the end of year 2023.
API = 'jit'
def _inrange(a, min_value, max_value):
return (np.clip(a, min_value, max_value) == a).all()
def _area(y1, x1, y2, x2):
return max(x2 - x1, 0.0) * max(y2 - y1, 0.0)
class Evaluator:
"""Evaluator for instance segmentation."""
def __init__(self, predict_fn, tokenizer,
model='oi', det_ious=(0.5, 0.75),
*, devices, **kw):
self.get_data_iter, self.steps = c.eval_input_pipeline(
keep_on_cpu={'prefix', 'suffix', 'objects/mask', 'objects/bbox'},
devices=devices, **kw)
self.tok = big_vision.pp.tokenizer.get_tokenizer(tokenizer)
self.decode = functools.partial(
predict_fn, devices=devices, eos_token=self.tok.eos_token)
tok = big_vision.pp.tokenizer.get_tokenizer(tokenizer)
self.loc0 = np.array(tok.to_int('<loc0000>'))
self.seg0 = np.array(tok.to_int('<seg000>'))
# Verify tokenizer has `tokensets=("loc", "seg")`
assert self.loc0.shape == (1,), self.loc0
assert self.seg0.shape == (1,), self.seg0
self.reconstruct_masks = get_reconstruct_masks(model)
self.det_ious = det_ious
def run(self, train_state):
"""Does one evaluation run, yields metrics."""
ious = [] # NOTE: no point to split in s/m/l: all objects are L (>96px²)
det_by_iou = {iou: [] for iou in self.det_ious}
invalid = total = 0
for _, batch in zip(range(self.steps), self.get_data_iter()):
decoded = self.decode(train_state, batch)
not_padding = u.get_local_slice_from_fsarray(batch['_mask'])
decoded = u.get_local_slice_from_fsarray(decoded)[not_padding]
# Note, gt masks are in full original image resolution.
gt_masks = [gt[:, :, 0] > 0 for gt in batch['objects/mask'][not_padding]]
gt_bbs = [gt for gt in batch['objects/bbox'][not_padding]]
valid = []
tokens = np.zeros([decoded.shape[0], 4 + 16], np.int32)
for i, dec in enumerate(decoded):
# TODO: b/andstein - do we need to optimize this loop?
t = np.r_[dec[:4] - self.loc0, dec[4:4 + 16] - self.seg0] # Ignore rest
if (
len(t) == 4 + 16 # Full prediction
and _inrange(t[:4], 0, 1023) # Valid box tokens
and _inrange(t[4:], 0, 127) # Valid seg tokens
and t[2] > t[0] and t[3] > t[1] # Valid box
):
valid.append(True)
tokens[i] = t
else:
valid.append(False)
tocpu = lambda x: jax.device_put(x, jax.local_devices(backend='cpu')[0])
seg_indices = np.array(tokens[:, 4:])
mask64 = jax.device_get(self.reconstruct_masks(tocpu(seg_indices)))
mask64 = mask64[..., 0]
bbox = tokens[:, :4] / 1023 # Back to [0.0 ... 1.0]
for v, m64, gtm, bb, gtbb in zip(valid, mask64, gt_masks, bbox, gt_bbs):
# TODO: b/andstein - do we need to optimize this loop?
total += 1
h, w = gtm.shape # gt is full/original image resolution mask.
# First, compute detection iou, in [0.0 ... 1.0] coordinate space.
y1, x1, y2, x2 = bb
gty1, gtx1, gty2, gtx2 = gtbb
ibb = max(y1, gty1), max(x1, gtx1), min(y2, gty2), min(x2, gtx2)
box_iou = _area(*ibb) / (_area(*bb) + _area(*gtbb) - _area(*ibb))
for iou_thresh in det_by_iou:
det_by_iou[iou_thresh].append(iou_thresh <= box_iou)
# Next, we convert to pixel coordinates and compute mask iou.
gt_area = gtm.sum()
y1, x1, y2, x2 = map(int, (y1 * h, x1 * w, y2 * h, x2 * w))
# Avoid compute-intensive mask stuff for invalid preds:
if not v or x2 <= x1 or y2 <= y1: # Can still happen after int().
iou = 0.0
invalid += 1
else:
mi = np.asarray(PIL.Image.fromarray(m64).resize(
[x2 - x1, y2 - y1], resample=PIL.Image.BILINEAR # pytype: disable=module-attr
)) # Predicted mask in box-sized image.
mi = mi > 0.0 # Mask decoder output in [-1.0 ... 1.0]
iarea = (gtm[y1:y2, x1:x2] & mi).sum() # Intersection pixels.
iou = iarea / (gt_area + mi.sum() - iarea)
ious.append(iou)
# Done going over all batches, now collect results from all processes.
sum_ious, num_ious, sum_dets, num_dets, num_invalid, num = c.process_sum([
sum(ious), len(ious),
{k: sum(v) for k, v in det_by_iou.items()},
{k: len(v) for k, v in det_by_iou.items()},
invalid, total
])
yield 'miou', sum_ious / num_ious
for k in sum_dets:
yield f'boxacc/{k}', sum_dets[k] / num_dets[k]
yield 'invalid', num_invalid
yield 'total', num
_KNOWN_MODELS = {
# Trained on open images.
'oi': 'gs://big_vision/paligemma/vae-oid.npz',
}
def _get_params(checkpoint):
"""Converts PyTorch checkpoint to Flax params."""
def transp(kernel):
return np.transpose(kernel, (2, 3, 1, 0))
def conv(name):
return {
'bias': checkpoint[name + '.bias'],
'kernel': transp(checkpoint[name + '.weight']),
}
def resblock(name):
return {
'Conv_0': conv(name + '.0'),
'Conv_1': conv(name + '.2'),
'Conv_2': conv(name + '.4'),
}
return {
'_embeddings': checkpoint['_vq_vae._embedding'],
'Conv_0': conv('decoder.0'),
'ResBlock_0': resblock('decoder.2.net'),
'ResBlock_1': resblock('decoder.3.net'),
'ConvTranspose_0': conv('decoder.4'),
'ConvTranspose_1': conv('decoder.6'),
'ConvTranspose_2': conv('decoder.8'),
'ConvTranspose_3': conv('decoder.10'),
'Conv_1': conv('decoder.12'),
}
def _quantized_values_from_codebook_indices(codebook_indices, embeddings):
batch_size, num_tokens = codebook_indices.shape
assert num_tokens == 16, codebook_indices.shape
unused_num_embeddings, embedding_dim = embeddings.shape
encodings = jnp.take(embeddings, codebook_indices.reshape((-1)), axis=0)
encodings = encodings.reshape((batch_size, 4, 4, embedding_dim))
return encodings
class ResBlock(nn.Module):
features: int
@nn.compact
def __call__(self, x):
original_x = x
x = nn.Conv(features=self.features, kernel_size=(3, 3), padding=1)(x)
x = nn.relu(x)
x = nn.Conv(features=self.features, kernel_size=(3, 3), padding=1)(x)
x = nn.relu(x)
x = nn.Conv(features=self.features, kernel_size=(1, 1), padding=0)(x)
return x + original_x
class Decoder(nn.Module):
"""Upscales quantized vectors to mask."""
@nn.compact
def __call__(self, x):
num_res_blocks = 2
dim = 128
num_upsample_layers = 4
x = nn.Conv(features=dim, kernel_size=(1, 1), padding=0)(x)
x = nn.relu(x)
for _ in range(num_res_blocks):
x = ResBlock(features=dim)(x)
for _ in range(num_upsample_layers):
x = nn.ConvTranspose(
features=dim,
kernel_size=(4, 4),
strides=(2, 2),
padding=2,
transpose_kernel=True,
)(x)
x = nn.relu(x)
dim //= 2
x = nn.Conv(features=1, kernel_size=(1, 1), padding=0)(x)
return x
@functools.cache
def get_reconstruct_masks(model):
"""Reconstructs masks from codebook indices.
Based on code from https://arxiv.org/abs/2301.02229
Verified in
https://colab.research.google.com/drive/1AOr0cokOpM6-N9Z5HmxoeGxGj6jS37Vl
Args:
model: Model to use for conversion.
Returns:
A function that expects indices shaped `[B, 16]` of dtype int32, each
ranging from 0 to 127 (inclusive), and that returns a decoded masks sized
`[B, 64, 64, 1]`, of dtype float32, in range [-1, 1].
"""
def reconstruct_masks(codebook_indices):
quantized = _quantized_values_from_codebook_indices(
codebook_indices, params['_embeddings']
)
return Decoder().apply({'params': params}, quantized)
with gfile.GFile(_KNOWN_MODELS.get(model, model), 'rb') as f:
params = _get_params(dict(np.load(f)))
return jax.jit(reconstruct_masks, backend='cpu')
|