File size: 11,064 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
# Copyright 2022 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""COCO17 panoptic evaluation."""
import functools
from functools import partial
import json
import os
import tempfile
import time
import zipfile

from absl import logging
from big_vision.evaluators.proj.uvim import common
import big_vision.pp.builder as pp_builder
import jax
import numpy as np
import panopticapi_converters.twochannels2panoptic_coco_format as converter
from panopticapi.evaluation import pq_compute
import tensorflow as tf
import tensorflow_datasets as tfds

from tensorflow.io import gfile


ROOT = os.environ.get('COCO_DATA_DIR', '.')

PANOPTIC_COCO_CATS_FILE = f'{ROOT}/panoptic_coco_categories.json'
PANOPTIC_2017 = {
    'train': f'{ROOT}/panoptic_train2017.json',
    'validation': f'{ROOT}/panoptic_val2017.json',
}

PANOPTIC_GT_ZIP = {
    'train': f'{ROOT}/panoptic_train2017.zip',
    'validation': f'{ROOT}/panoptic_val2017.zip',
}


class Evaluator:
  """Panoptic segmentation evaluator: calls official COCO API.

  `predict_fn` accepts arbitrary dictionaries of parameters and data, where
  the data dictionary is produced by the `pp` op. It is expected to output a
  2-channel mask, where the first channel encodes semantics, and the second
  channel encodes instance ids.
  """

  def __init__(self,
               predict_fn,
               pp_fn,
               batch_size,
               dataset='coco/2017_panoptic',
               dataset_dir=None,
               split='validation',
               predict_kwargs=None):
    # Prepare to run predict on all processes and gather predictions on all
    # devices. Note: if needed consider only gather across processes.
    def predict(params, batch):
      res = {
          'image/id': batch['image/id'],
          'mask': batch['mask'],
          'y': predict_fn(params, batch['input'], **(predict_kwargs or {})),
      }
      return jax.lax.all_gather(res, axis_name='data', axis=0)

    self.predict_fn = jax.pmap(predict, axis_name='data')

    # Prepare data for each process and pad with zeros so all processes have the
    # same number of batches.
    def preprocess(example):
      return {
          'image/id': example['image/id'],
          'mask': tf.constant(1),
          'input': pp_builder.get_preprocess_fn(pp_fn)(example),
      }

    self.data = common.get_jax_process_dataset(
        dataset, split, dataset_dir=dataset_dir,
        global_batch_size=batch_size,
        pp_fn=preprocess)

    # Only process 0 runs conversion to png and calls into coco api.
    if jax.process_index() == 0:
      self.result_dir = tempfile.TemporaryDirectory()
      (self.gt_folder, self.gt_json, self.categories_json,
       self.remap, self.size_map) = _prepare_ground_truth(
           dataset, split, dataset_dir)

  def _compute_png_predictions(self, params):
    """Computes predictions and converts then to png to optimize memory use."""
    count = 0
    logging.info('Panoptic eval: running inference.')
    for batch in self.data.as_numpy_iterator():
      out = self.predict_fn(params, batch)

      if jax.process_index():
        continue

      out = jax.device_get(jax.tree_map(lambda x: x[0], out))
      mask = out['mask']
      pan_recs = out['y'][mask != 0]
      ids = out['image/id'][mask != 0]

      for pan_rec, image_id in zip(pan_recs, ids):
        sem = pan_rec[..., 0]
        ins = pan_rec[..., 1]

        sem_remapped = np.array(sem)
        for v in np.unique(sem):
          sem_remapped[sem == v] = self.remap[v]
        sem = sem_remapped

        pan_mask = np.stack([sem, ins, np.zeros_like(sem)], axis=-1)
        pan_mask = _resize_nearest(pan_mask, self.size_map[image_id])
        pan_mask_png = tf.io.encode_png(pan_mask.astype('uint8')).numpy()

        fname = f'{self.result_dir.name}/{image_id:012d}.png'
        with open(fname, 'wb') as f:
          f.write(pan_mask_png)
        count += 1

      logging.log_every_n_seconds(
          logging.INFO, 'Panoptic eval: processed %i examples so far.', 30,
          count)

    if jax.process_index():
      return None

    logging.info('Panoptic eval: inference done. Processed %d examples.', count)
    return self.result_dir

  def run(self, params):
    """Run eval."""
    # Note result_dir is constant, but files inside are mutated.
    result_dir = self._compute_png_predictions(params)

    if not result_dir:
      return

    with tempfile.TemporaryDirectory() as pred_folder, \
         tempfile.NamedTemporaryFile(mode='w') as pred_json:

      logging.info('Panoptic eval: running conversion.')
      converter.converter(
          source_folder=result_dir.name,
          images_json_file=self.gt_json,
          categories_json_file=self.categories_json,
          segmentations_folder=pred_folder,
          predictions_json_file=pred_json.name)
      logging.info('Panoptic eval: conversion done.')

      logging.info('Panoptic eval: running metrics computation.')
      res = pq_compute(gt_json_file=self.gt_json,
                       gt_folder=self.gt_folder,
                       pred_json_file=pred_json.name,
                       pred_folder=pred_folder)
      logging.info('Panoptic eval: metrics computation done.')

    for k in ['All', 'Stuff', 'Things']:
      for m in ['pq', 'rq', 'sq']:
        yield f'{k}_{m}', res[k][m]


def _prepare_ground_truth(dataset, split, data_dir):
  """Prepare ground truth from tf.data.Dataset."""
  if dataset == 'coco/2017_panoptic' and data_dir is None:
    return _prepare_ground_truth_from_zipfiles(split)
  else:
    return _prepare_ground_truth_from_dataset(dataset, split, data_dir)


@functools.lru_cache(maxsize=None)
def _prepare_ground_truth_from_dataset(dataset, split, data_dir):
  """Prepare ground truth from a tf.data.Dataset."""
  dataset = tfds.builder(dataset, data_dir=data_dir).as_dataset(split=split)

  categories_json = _make_local_copy(PANOPTIC_COCO_CATS_FILE)
  with gfile.GFile(categories_json, 'rb') as f:
    categories = json.loads(f.read())

  # Build map from tfds class ids to COCO class ids.
  remap = {0: 0}
  with gfile.GFile(categories_json, 'r') as f:
    remap = {**remap, **{(i + 1): x['id'] for i, x in enumerate(categories)}}

  gt_folder = tempfile.mkdtemp()
  gfile.makedirs(gt_folder)
  size_map = {}
  annotations = []
  images = []
  for example in dataset:
    image_id = int(example['image/id'])
    panoptic_image = example['panoptic_image']
    ann_ids = example['panoptic_objects']['id']
    ann_labels = example['panoptic_objects']['label']
    ann_iscrowd = example['panoptic_objects']['is_crowd']
    ann_area = example['panoptic_objects']['area']

    fname = f'{image_id:012d}.png'
    with gfile.GFile(os.path.join(gt_folder, fname), 'wb') as f:
      f.write(tf.io.encode_png(panoptic_image).numpy())

    size_map[image_id] = (panoptic_image.shape[0], panoptic_image.shape[1])

    segments_info = []
    for i in range(len(ann_ids)):
      segments_info.append({
          'id': int(ann_ids[i]),
          'category_id': remap[int(ann_labels[i] + 1)],
          'iscrowd': int(ann_iscrowd[i]),
          'area': int(ann_area[i]),
      })

    annotations.append({
        'file_name': str(fname),
        'image_id': int(image_id),
        'segments_info': segments_info
    })
    images.append({
        'id': image_id,
        'file_name': f'{image_id:012d}.jpg',
    })

  # Write annotations.json needed for pq_compute.
  gt_json = os.path.join(gt_folder, 'annotations.json')
  with gfile.GFile(gt_json, 'wb') as f:
    f.write(json.dumps({
        'images': images,
        'annotations': annotations,
        'categories': categories,
    }))

  return gt_folder, gt_json, categories_json, remap, size_map


def _prepare_ground_truth_from_zipfiles(split):
  """Prepare ground truth from coco zip files."""
  split_prefix = split.split('[')[0]
  if split_prefix not in ('train', 'validation'):
    raise ValueError(f'Split {split} not supported')

  # The following 4 calls are cached. This allows to save significant time
  # in use cases like sweeping predict_fn hparams on the same run.
  gt_json = _make_local_copy(PANOPTIC_2017[split_prefix])
  gt_folder = _make_local_unzip_copy(PANOPTIC_GT_ZIP[split_prefix])
  categories_json = _make_local_copy(PANOPTIC_COCO_CATS_FILE)
  image_ids = _list_image_ids('coco/2017_panoptic', split)

  gt_folder = os.path.join(
      gt_folder, 'panoptic_val2017'
      if split_prefix == 'validation' else 'panoptic_train2017')

  # Build map from tfds class ids to COCO class ids.
  remap = {0: 0}
  with gfile.GFile(categories_json, 'r') as f:
    remap = {**remap, **{(i + 1): x['id'] for i, x in enumerate(json.load(f))}}

  # Filters gt_json to contain only annotations for images in dataset.
  with gfile.GFile(gt_json) as f:
    data = json.load(f)
  logging.info(
      'Panoptic eval: pre-filter %d annotations.',
      len(data['annotations'])
  )
  data['images'] = [x for x in data['images'] if x['id'] in image_ids]
  data['annotations'] = [
      x for x in data['annotations'] if x['image_id'] in image_ids
  ]
  logging.info(
      'Panoptic eval: post-filter %d annotations.',
      len(data['annotations'])
  )
  filtered_gt_json = tempfile.NamedTemporaryFile(delete=False).name
  with open(filtered_gt_json, 'w') as f:
    json.dump(data, f)

  # Precompute images sizes.
  size_map = {x['id']: (x['height'], x['width']) for x in data['images']}

  return gt_folder, filtered_gt_json, categories_json, remap, size_map


@functools.lru_cache(maxsize=None)
def _list_image_ids(dataset, split):
  d = tfds.load(dataset, split=split).map(lambda x: x['image/id'])
  return frozenset(d.as_numpy_iterator())


@functools.lru_cache(maxsize=None)
def _make_local_copy(fname) -> str:
  start = time.monotonic()
  local_file = tempfile.NamedTemporaryFile(delete=False)
  gfile.copy(fname, local_file.name, overwrite=True)
  logging.info('Copy %s in %d seconds.', fname, time.monotonic() - start)
  return local_file.name


@functools.lru_cache(maxsize=None)
def _make_local_unzip_copy(fname) -> str:
  start = time.monotonic()
  folder = tempfile.mkdtemp()
  with tempfile.NamedTemporaryFile() as tmp_zip_file:
    gfile.copy(fname, tmp_zip_file.name, overwrite=True)
    with zipfile.ZipFile(tmp_zip_file.name, 'r') as f:
      f.extractall(folder)
  logging.info('Copy %s in %d seconds.', fname, time.monotonic() - start)
  return folder


@partial(jax.jit, static_argnums=(1,), backend='cpu')
def _resize_nearest(image, shape):
  return jax.image.resize(image, shape + image.shape[-1:], 'nearest')