File size: 4,942 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""ResNet V1 with GroupNorm."""

from typing import Optional, Sequence, Union

from big_vision import utils
from big_vision.models import common
import flax
import flax.linen as nn
import flax.training.checkpoints
import jax.numpy as jnp
import numpy as np


def weight_standardize(w, axis, eps):
  w = w - jnp.mean(w, axis=axis)
  w = w / (jnp.std(w, axis=axis) + eps)
  return w


class StdConv(nn.Conv):

  def param(self, name, *a, **kw):
    param = super().param(name, *a, **kw)
    if name == "kernel":
      param = weight_standardize(param, axis=[0, 1, 2], eps=1e-5)
    return param


class ResidualUnit(nn.Module):
  """Bottleneck ResNet block."""
  nmid: Optional[int] = None
  strides: Sequence[int] = (1, 1)

  @nn.compact
  def __call__(self, x):
    nmid = self.nmid or x.shape[-1] // 4
    nout = nmid * 4

    residual = x
    if x.shape[-1] != nout or self.strides != (1, 1):
      residual = StdConv(nout, (1, 1), self.strides, use_bias=False,
                         name="conv_proj")(residual)
      residual = nn.GroupNorm(name="gn_proj")(residual)

    y = StdConv(nmid, (1, 1), use_bias=False, name="conv1")(x)
    y = nn.GroupNorm(name="gn1")(y)
    y = nn.relu(y)
    y = StdConv(nmid, (3, 3), self.strides, use_bias=False, name="conv2")(y)
    y = nn.GroupNorm(name="gn2")(y)
    y = nn.relu(y)
    y = StdConv(nout, (1, 1), use_bias=False, name="conv3")(y)

    y = nn.GroupNorm(name="gn3", scale_init=nn.initializers.zeros)(y)
    y = nn.relu(residual + y)
    return y


class ResNetStage(nn.Module):
  """One stage of ResNet."""
  block_size: int
  first_stride: Sequence[int] = (1, 1)
  nmid: Optional[int] = None

  @nn.compact
  def __call__(self, x):
    x = ResidualUnit(self.nmid, strides=self.first_stride, name="unit1")(x)
    for i in range(1, self.block_size):
      x = ResidualUnit(self.nmid, name=f"unit{i + 1}")(x)
    return x


class Model(nn.Module):
  """ResNetV1."""
  num_classes: Optional[int] = None
  width: float = 1
  depth: Union[int, Sequence[int]] = 50

  @nn.compact
  def __call__(self, image, *, train=False):
    del train  # Unused
    blocks = get_block_desc(self.depth)
    width = int(64 * self.width)

    out = {}

    # Root block
    x = StdConv(width, (7, 7), (2, 2), use_bias=False, name="conv_root")(image)
    x = nn.GroupNorm(name="gn_root")(x)
    x = nn.relu(x)
    x = nn.max_pool(x, (3, 3), strides=(2, 2), padding="SAME")
    out["stem"] = x

    # Stages
    x = ResNetStage(blocks[0], nmid=width, name="block1")(x)
    out["stage1"] = x
    for i, block_size in enumerate(blocks[1:], 1):
      x = ResNetStage(block_size, nmid=width * 2 ** i,
                      first_stride=(2, 2), name=f"block{i + 1}")(x)
      out[f"stage{i + 1}"] = x
    out["pre_logits_2d"] = x

    # Head
    x = out["pre_logits"] = jnp.mean(x, axis=(1, 2))

    if self.num_classes:
      head = nn.Dense(self.num_classes, name="head",
                      kernel_init=nn.initializers.zeros)
      out["logits_2d"] = head(out["pre_logits_2d"])
      x = out["logits"] = head(out["pre_logits"])

    return x, out


# A dictionary mapping the number of layers in a resnet to the number of
# blocks in each stage of the model.
# NOTE: Does not include 18/34 as they also need non-bottleneck block!
def get_block_desc(depth):
  if isinstance(depth, list):  # Be robust to silly mistakes.
    depth = tuple(depth)
  return {
      26: [2, 2, 2, 2],  # From timm, gets ~75% on ImageNet.
      50: [3, 4, 6, 3],
      101: [3, 4, 23, 3],
      152: [3, 8, 36, 3],
      200: [3, 24, 36, 3]
  }.get(depth, depth)


def fix_old_checkpoints(params):
  """Modifies params from old checkpoints to run with current implementation."""
  params = flax.core.unfreeze(
      flax.training.checkpoints.convert_pre_linen(params))
  # Old linen used to store non-squeezed GN params.
  params = flax.traverse_util.unflatten_dict({
      k: np.squeeze(v) if (set(k)
                           & {"gn_root", "gn_proj", "gn1", "gn2", "gn3"}) else v
      for k, v in flax.traverse_util.flatten_dict(params).items()
  })
  return params


def load(init_params, init_file, model_cfg, dont_load=()):
  """Load init from checkpoint."""
  del model_cfg  # Unused
  params = utils.load_params(init_file)
  params = common.merge_params(params, init_params, dont_load)
  params = fix_old_checkpoints(params)
  return params