File size: 16,449 Bytes
74e8f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 |
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""gemma reimplementation for big_vision.
We follow this einsum axis naming convention:
B: batch
T: query length
S: k/v length
N: num query heads
K: num k/v heads
G: num query heads per k/v head
H: head dim
D: d_model ("features")
Example Colab using the models via the PaliGemma decoding logic:
(internal link)
Doc locating the variable initializers in the original code and validating them:
(internal link)
"""
from big_vision.models import common
import big_vision.utils as u
import einops
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
import ml_collections
import numpy as np
import orbax.checkpoint
def get_config(variant):
"""Returns config for specified gemma variant."""
if variant == "gemma_2b":
return ml_collections.ConfigDict(
dict(
variant=variant,
width=2048,
depth=18,
mlp_dim=16_384,
num_heads=8,
num_kv_heads=1,
head_dim=256,
norm_eps=1e-6,
vocab_size=256_128,
scan=True,
remat_policy="nothing_saveable",
)
)
if variant == "gemma_7b":
return ml_collections.ConfigDict(
dict(
variant=variant,
width=3072,
depth=28,
mlp_dim=24_576,
num_heads=16,
num_kv_heads=16,
head_dim=256,
norm_eps=1e-6,
vocab_size=256_128,
scan=True,
remat_policy="nothing_saveable",
)
)
raise ValueError(f"Unknown variant: {variant}")
def _apply_rope(x, *, positions, max_wavelength=10_000):
"""Applies RoPE positions [B, L] to x [B, L, H, D]."""
freq_exponents = (2. / x.shape[-1]) * jnp.arange(x.shape[-1] // 2)
timescale = (max_wavelength ** freq_exponents)
radians = positions[..., None] / timescale[None, None, :]
radians = radians[..., None, :]
# radians.shape = [...,L,1,d=D/2]
sin, cos = jnp.sin(radians), jnp.cos(radians)
x1, x2 = jnp.split(x, 2, axis=-1)
res = jnp.concatenate([x1 * cos - x2 * sin, x2 * cos + x1 * sin], axis=-1)
return res
def _update_kv_cache(module, k, v, cache_size, cache_dtype):
"""Updates KV cache and returns its current contents."""
initialized = module.has_variable("cache", "idx")
batch_size, update_len, num_heads, head_dim = k.shape
cache_dtype = cache_dtype or k.dtype
# Idx of which cache row to update next is the same for all examples, so that
# it allows to update with dynamic_update_slice. But in order to keep things
# nicely partitioned we store it with leading batch dimension and use only
# the first entry.
idx = module.variable("cache", "idx", jnp.zeros, (batch_size,), jnp.int32)
kv_shape = (batch_size, cache_size, num_heads, head_dim)
k_cache = module.variable(
"cache", "k_cache", jnp.zeros, kv_shape, cache_dtype)
v_cache = module.variable(
"cache", "v_cache", jnp.zeros, kv_shape, cache_dtype)
if initialized: # write k, v in the next cache position.
assert update_len == 1, update_len
# Note: idx is the same for all examples. Use value from example 0.
indices = (0, idx.value[0], 0, 0)
k_cache.value = jax.lax.dynamic_update_slice(
k_cache.value, k.astype(cache_dtype), indices)
v_cache.value = jax.lax.dynamic_update_slice(
v_cache.value, v.astype(cache_dtype), indices)
idx.value = idx.value + 1
else: # init cache with k, v after padding to cache_size.
prefill_len = k.shape[1]
pad_width = ((0, 0), (0, cache_size - prefill_len), (0, 0), (0, 0))
k_cache.value = jnp.pad(k.astype(cache_dtype), pad_width)
v_cache.value = jnp.pad(v.astype(cache_dtype), pad_width)
idx.value = idx.value + prefill_len
return k_cache.value.astype(k.dtype), v_cache.value.astype(v.dtype)
def trunc_norm_init(in_axis, out_axis, batch_axis):
return nn.initializers.variance_scaling(
1.0, "fan_in", "truncated_normal",
in_axis=in_axis, out_axis=out_axis, batch_axis=batch_axis)
class Einsum(nn.Module):
shape: tuple[int, ...]
w_init: nn.initializers.Initializer = nn.initializers.zeros_init()
@nn.compact
def __call__(self, eqn, x):
w = self.param("w", self.w_init, self.shape)
return jnp.einsum(eqn, x, w)
class RMSNorm(nn.Module):
@nn.compact
def __call__(self, x):
scale = self.param("scale", nn.initializers.zeros_init(), (x.shape[-1]))
var = jnp.mean(jnp.square(x), axis=-1, keepdims=True)
normed_inputs = jnp.asarray(x * jnp.reciprocal(jnp.sqrt(var + 1e-06)))
normed_inputs = normed_inputs * (1 + scale)
return normed_inputs
class Embedder(nn.Module):
"""Embedder module."""
vocab_size: int
embed_dim: int
def setup(self):
self.input_embedding_table = self.param(
"input_embedding",
nn.initializers.variance_scaling(
scale=1.0, mode="fan_in", distribution="normal",
in_axis=1, out_axis=0,),
(self.vocab_size, self.embed_dim),
)
def encode(self, x):
x = self.input_embedding_table[(x,)]
x *= jnp.sqrt(self.embed_dim).astype(x.dtype)
return x
def decode(self, x):
return jnp.dot(x, self.input_embedding_table.T)
class Attention(nn.Module):
"""Attention module."""
num_heads: int
num_kv_heads: int
features: int
head_dim: int
cache_dtype: str | None = None
def setup(self):
if self.num_kv_heads == self.num_heads:
self.qkv_einsum = Einsum(
shape=(3, self.num_heads, self.features, self.head_dim),
w_init=trunc_norm_init(
in_axis=(2,), out_axis=(0, 1, 3), batch_axis=()),
)
else:
# MQA
self.q_einsum = Einsum(
shape=(self.num_heads, self.features, self.head_dim),
w_init=trunc_norm_init(in_axis=(1,), out_axis=(0, 2), batch_axis=()),
)
self.kv_einsum = Einsum(
shape=(2, self.num_kv_heads, self.features, self.head_dim),
w_init=trunc_norm_init(
in_axis=(2,), out_axis=(0, 1, 3), batch_axis=()),
)
self.attn_vec_einsum = Einsum(
shape=(self.num_heads, self.head_dim, self.features),
w_init=trunc_norm_init(in_axis=(0, 1), out_axis=(2,), batch_axis=()),
)
@nn.compact
def __call__(self, x, positions, attn_mask, decode, deterministic=True):
if self.num_kv_heads == self.num_heads:
q, k, v = self.qkv_einsum("BSD,3KDH->3BSKH", x)
else:
q = self.q_einsum("BTD,NDH->BTNH", x)
k, v = self.kv_einsum("BSD,2KDH->2BSKH", x)
q = _apply_rope(q, positions=positions)
q *= self.head_dim**-0.5
k = _apply_rope(k, positions=positions)
if decode:
k, v = _update_kv_cache(self, k, v,
cache_size=attn_mask.shape[-1],
cache_dtype=self.cache_dtype)
q = einops.rearrange(q, "B T (K G) H -> B T K G H", K=self.num_kv_heads)
logits = jnp.einsum("BTKGH,BSKH->BKGTS", q, k)
logits = logits.astype(jnp.float32)
if attn_mask.shape != (q.shape[0], 1, q.shape[1], k.shape[1]):
raise ValueError(
f"Attention mask with shape {attn_mask.shape} but shapes for q and k "
f"are: {q.shape} and {k.shape}"
)
# big_neg = jnp.finfo(logits.dtype).min
big_neg = -2.3819763e38 # See gemma/modules.py
masked_logits = jnp.where(attn_mask[:, :, None, :, :], logits, big_neg)
probs = jax.nn.softmax(masked_logits, axis=-1).astype(k.dtype)
encoded = jnp.einsum("BKGTS,BSKH->BTKGH", probs, v)
encoded = einops.rearrange(encoded, "B T K G H -> B T (K G) H")
attn_output = self.attn_vec_einsum("BTNH,NHD->BTD", encoded)
return attn_output
class FeedForward(nn.Module):
"""Feed forward module."""
features: int
hidden_dim: int
@nn.compact
def __call__(self, x):
w_gating = self.param(
"gating_einsum",
trunc_norm_init(in_axis=(1,), out_axis=(0, 2), batch_axis=()),
((2, self.features, self.hidden_dim)),
)
ff_gate = jnp.dot(x, w_gating[0])
gate_value = nn.gelu(ff_gate)
ff1 = jnp.dot(x, w_gating[1])
activations = gate_value * ff1
w_linear = self.param(
"linear",
trunc_norm_init(in_axis=(0,), out_axis=(1,), batch_axis=()),
(self.hidden_dim, self.features),
)
outputs = jnp.dot(activations, w_linear)
return outputs
class Block(nn.Module):
"""Transformer block."""
num_heads: int
num_kv_heads: int
embed_dim: int
head_dim: int
hidden_dim: int
dropout: float = 0.0
dropout_bdims: tuple[int, ...] = ()
cache_dtype: str | None = None
def setup(self):
self.pre_attention_norm = RMSNorm()
self.attn = Attention(
num_heads=self.num_heads,
num_kv_heads=self.num_kv_heads,
features=self.embed_dim,
head_dim=self.head_dim,
cache_dtype=self.cache_dtype,
)
self.pre_ffw_norm = RMSNorm()
self.mlp = FeedForward(features=self.embed_dim, hidden_dim=self.hidden_dim)
if self.dropout:
self.drop = nn.Dropout(self.dropout, self.dropout_bdims)
else:
self.drop = lambda x, _: x
def __call__(self, x, unused_scan_arg, positions, attn_mask,
decode, deterministic=True):
x = nn.with_logical_constraint(x, ("act_batch", "act_len", "act_emb"))
inputs_normalized = self.pre_attention_norm(x)
attn_output = self.attn(inputs_normalized, positions, attn_mask,
decode, deterministic)
attn_output = self.drop(attn_output, deterministic)
attn_output += x
residual = attn_output
attn_output = self.pre_ffw_norm(attn_output)
outputs = self.mlp(attn_output)
outputs = self.drop(outputs, deterministic)
outputs = residual + outputs
return outputs, unused_scan_arg
class Model(nn.Module):
"""gemma model."""
variant: str
width: int
depth: int
mlp_dim: int
num_heads: int
num_kv_heads: int
head_dim: int
norm_eps: float
vocab_size: int
dropout: float = 0.0
dropout_bdims: tuple[int, ...] = () # Every float is dropped independently.
cache_dtype: str | None = None
# TODO: Wire this in all places needed so that the model can be
# run with different activation dtype. For now only float32 runs.
embed_dtype: str = "float32"
scan: bool = False
remat_policy: str = "none"
@nn.compact
def __call__(
self, tokens, *,
embedded_prefix=None,
embed_only=False,
pre_logits=None,
positions=None, mask=None,
decode=False, deterministic=True,
):
"""Embed only, or complete forward pass.
Args:
tokens: Embedded, then and appended to `embedded_prefix`. Can be None.
embedded_prefix: Optional prefix that is already embedded.
embed_only: Whether to compute embeddings only.
pre_logits: If present computes logits from pre_logits and returns.
positions: Optional `[B, T]` allows to specify the absolute position of
the tokens.
mask: Optional attention mask `[B, T, S]`.
decode: Whether to use kv-cache. Caller must pass masks and positions.
deterministic: Forwarded to all dropout layers.
Returns:
If `embed_only=False`, then `(logits, out)` will be returned.
If `embed_only=True`, then the embeddings will be returned.
"""
out = {}
embedder = Embedder(
vocab_size=self.vocab_size,
embed_dim=self.width,
name="embedder")
if pre_logits is not None:
x = out["pre_logits"] = pre_logits
logits = out["logits"] = embedder.decode(x)
return logits, out
x = []
if embedded_prefix is not None:
x.append(embedded_prefix)
if tokens is not None:
x.append(embedder.encode(tokens))
x = jnp.concatenate(x, axis=-2)
x = x.astype(self.embed_dtype)
batch_size, seq_len, width = x.shape
if embed_only:
return x
if decode:
assert positions is not None and mask is not None, (
"Must explicitly pass positions and mask for decoding.")
if positions is None:
positions = jnp.arange(seq_len).astype(jnp.int32)[None, :]
assert positions.shape[1] == x.shape[1], (positions.shape, x.shape)
if mask is None:
mask = nn.attention.make_causal_mask(jnp.ones([batch_size, seq_len]))
if mask.ndim == 3:
mask = mask[:, None, :, :]
cache_size = max(seq_len, mask.shape[-1])
assert mask.shape == (batch_size, 1, seq_len, cache_size), mask.shape
if self.remat_policy == "none":
block_cls = Block
else:
block_cls = nn.remat(
Block,
prevent_cse=not self.scan,
static_argnums=(5, 6), # 0=self, 5=decode, 6=deterministic
policy=getattr(jax.checkpoint_policies, self.remat_policy),
)
block_kw = dict(
num_heads=self.num_heads,
head_dim=self.head_dim,
num_kv_heads=self.num_kv_heads,
embed_dim=width,
hidden_dim=self.mlp_dim,
dropout=self.dropout,
dropout_bdims=self.dropout_bdims,
cache_dtype=self.cache_dtype,
)
layers = self.scope.push("layers")
if self.scan:
blocks = [nn.scan(
block_cls,
# cache has axis 1 since we want leading dimension to be batch size.
variable_axes={"params": 0, "cache": 1},
split_rngs={"params": True, "dropout": True},
in_axes=nn.broadcast,
length=self.depth,
)(
parent=layers, **block_kw
)]
else:
blocks = [
block_cls(
parent=layers.push(str(layer)),
**block_kw,
)
for layer in range(self.depth)
]
unused_scan_arg = ()
for block in blocks:
x, unused_scan_arg = block(
x, unused_scan_arg, positions, mask, decode, deterministic)
assert x.dtype == jnp.dtype(self.embed_dtype) # Sanity check.
out["encoded"] = x
x = RMSNorm(name="final_norm")(x)
out["pre_logits"] = x
x = embedder.decode(x)
out["logits"] = x
return x, out
_ORBAX_INITS = {}
_BV_INITS = {}
def _load_orbax(path):
"""Loads and coverts Orbax gemma checkpoint."""
checkpointer = orbax.checkpoint.PyTreeCheckpointer()
params = checkpointer.restore(path)
params = flax.traverse_util.unflatten_dict(params, sep="/")["transformer"]
n = sum(1 for k in params if k.startswith("layer_"))
params["layers"] = jax.tree.map(
lambda *xs: np.stack(xs), *(params.pop(f"layer_{i}") for i in range(n))
)
mlp = params["layers"]["mlp"]
mlp["gating_einsum"] = mlp["gating_einsum"].pop("w")
mlp["linear"] = mlp["linear"].pop("w")
return params
def _del_pad_rows(params):
"""Some checkpoints have 128 unused padding tokens."""
emb = params["embedder"]["input_embedding"]
assert emb.shape[0] == 256_128
params["embedder"]["input_embedding"] = np.asarray(emb)[:256_000]
return params
def load(init_params, init_file, model_cfg=None, dont_load=()):
"""Loads existing weights."""
model_cfg = model_cfg or {}
variant = model_cfg.get("variant", "gemma_2b")
init_variant = f"{init_file} {variant}"
if init_variant in _ORBAX_INITS:
params = _del_pad_rows(_load_orbax(_ORBAX_INITS[init_variant]))
elif init_variant in _BV_INITS:
params = _del_pad_rows(u.load_params(_BV_INITS[init_variant]))
else:
params = u.load_params(init_file)
def extend_rows(emb1, target_rows):
if (missing_rows := target_rows - emb1.shape[0]) == 0:
return emb1
assert missing_rows > 0, "You're asking to shrink vocab?!"
new_rows = np.random.randn(missing_rows, emb1.shape[1])
new_rows = (new_rows * 0.02).astype(emb1.dtype)
return np.r_[np.asarray(emb1), new_rows]
if "vocab_size" in model_cfg:
params["embedder"]["input_embedding"] = extend_rows(
params["embedder"]["input_embedding"],
model_cfg["vocab_size"],
)
return common.merge_params(params, init_params, dont_load)
|