File size: 17,426 Bytes
74e8f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utilities for fake BERT checkpoint."""
import tempfile
import tensorflow.compat.v1 as tf
# Checkpoint structure was extracted with the following (Colab) snippet:
#
# !wget https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-12_H-768_A-12.zip # pylint: disable=line-too-long
# !unzip uncased_L-12_H-768_A-12.zip
#
# import tensorflow.compat.v1 as tf
#
# ckpt_reader = tf.train.load_checkpoint('bert_model.ckpt')
# tf_params = {
# tf_name: ckpt_reader.get_tensor(tf_name)
# for tf_name in ckpt_reader.get_variable_to_dtype_map()
# }
#
# 'shapes_dtypes = {\n%s\n}' % '\n'.join(
# f' "{k}": ({v.shape}, "{v.dtype}"),'
# for k, v, in tf_params.items()
# )
# pylint: disable=line-too-long
_BASE_SHAPES_DTYPES = {
"cls/seq_relationship/output_bias": ((2,), "float32"),
"cls/predictions/transform/LayerNorm/gamma": ((768,), "float32"),
"cls/predictions/transform/LayerNorm/beta": ((768,), "float32"),
"bert/pooler/dense/kernel": ((768, 768), "float32"),
"bert/encoder/layer_5/attention/output/dense/bias": ((768,), "float32"),
"bert/encoder/layer_9/output/dense/bias": ((768,), "float32"),
"bert/encoder/layer_9/output/LayerNorm/gamma": ((768,), "float32"),
"bert/encoder/layer_3/attention/self/value/bias": ((768,), "float32"),
"bert/encoder/layer_7/output/dense/bias": ((768,), "float32"),
"bert/encoder/layer_9/output/LayerNorm/beta": ((768,), "float32"),
"bert/encoder/layer_7/attention/output/LayerNorm/beta": ((768,), "float32"),
"bert/encoder/layer_9/intermediate/dense/bias": ((3072,), "float32"),
"bert/encoder/layer_9/attention/self/query/kernel": ((768, 768), "float32"),
"bert/encoder/layer_9/attention/self/query/bias": ((768,), "float32"),
"bert/encoder/layer_9/attention/output/LayerNorm/gamma": ((768,), "float32"),
"bert/encoder/layer_9/attention/output/LayerNorm/beta": ((768,), "float32"),
"bert/encoder/layer_8/output/dense/bias": ((768,), "float32"),
"bert/encoder/layer_4/attention/self/value/kernel": ((768, 768), "float32"),
"bert/encoder/layer_8/output/LayerNorm/gamma": ((768,), "float32"),
"bert/encoder/layer_8/output/LayerNorm/beta": ((768,), "float32"),
"bert/encoder/layer_11/output/LayerNorm/beta": ((768,), "float32"),
"bert/encoder/layer_11/output/LayerNorm/gamma": ((768,), "float32"),
"bert/encoder/layer_8/intermediate/dense/kernel": ((768, 3072), "float32"),
"bert/encoder/layer_8/attention/self/value/kernel": ((768, 768), "float32"),
"bert/encoder/layer_2/output/dense/kernel": ((3072, 768), "float32"),
"bert/encoder/layer_8/attention/self/value/bias": ((768,), "float32"),
"bert/encoder/layer_1/attention/self/value/bias": ((768,), "float32"),
"bert/encoder/layer_8/attention/output/dense/kernel": ((768, 768), "float32"),
"bert/encoder/layer_3/attention/output/LayerNorm/beta": ((768,), "float32"),
"bert/encoder/layer_8/attention/self/query/bias": ((768,), "float32"),
"bert/encoder/layer_8/attention/output/LayerNorm/gamma": ((768,), "float32"),
"bert/encoder/layer_8/attention/output/LayerNorm/beta": ((768,), "float32"),
"bert/encoder/layer_7/output/LayerNorm/gamma": ((768,), "float32"),
"bert/encoder/layer_7/intermediate/dense/bias": ((3072,), "float32"),
"bert/encoder/layer_8/intermediate/dense/bias": ((3072,), "float32"),
"bert/encoder/layer_7/attention/self/value/kernel": ((768, 768), "float32"),
"bert/encoder/layer_7/attention/self/value/bias": ((768,), "float32"),
"bert/encoder/layer_9/attention/self/key/kernel": ((768, 768), "float32"),
"bert/encoder/layer_7/attention/self/query/kernel": ((768, 768), "float32"),
"bert/encoder/layer_7/attention/self/key/kernel": ((768, 768), "float32"),
"bert/encoder/layer_6/output/dense/kernel": ((3072, 768), "float32"),
"bert/encoder/layer_6/output/LayerNorm/gamma": ((768,), "float32"),
"bert/encoder/layer_6/intermediate/dense/kernel": ((768, 3072), "float32"),
"bert/encoder/layer_0/attention/self/query/bias": ((768,), "float32"),
"bert/encoder/layer_6/attention/output/dense/bias": ((768,), "float32"),
"bert/encoder/layer_7/output/LayerNorm/beta": ((768,), "float32"),
"bert/encoder/layer_4/attention/self/key/kernel": ((768, 768), "float32"),
"bert/encoder/layer_5/output/dense/bias": ((768,), "float32"),
"bert/encoder/layer_2/attention/self/value/kernel": ((768, 768), "float32"),
"bert/encoder/layer_5/output/LayerNorm/gamma": ((768,), "float32"),
"bert/encoder/layer_5/output/LayerNorm/beta": ((768,), "float32"),
"bert/encoder/layer_5/intermediate/dense/kernel": ((768, 3072), "float32"),
"bert/encoder/layer_9/attention/self/value/kernel": ((768, 768), "float32"),
"bert/encoder/layer_3/attention/self/query/kernel": ((768, 768), "float32"),
"bert/encoder/layer_8/attention/self/key/kernel": ((768, 768), "float32"),
"bert/encoder/layer_5/intermediate/dense/bias": ((3072,), "float32"),
"bert/encoder/layer_5/attention/self/query/kernel": ((768, 768), "float32"),
"bert/encoder/layer_5/attention/self/key/bias": ((768,), "float32"),
"bert/encoder/layer_5/attention/output/dense/kernel": ((768, 768), "float32"),
"bert/encoder/layer_5/attention/self/value/kernel": ((768, 768), "float32"),
"bert/encoder/layer_5/attention/output/LayerNorm/gamma": ((768,), "float32"),
"bert/encoder/layer_5/attention/output/LayerNorm/beta": ((768,), "float32"),
"bert/encoder/layer_4/output/dense/bias": ((768,), "float32"),
"bert/embeddings/token_type_embeddings": ((2, 768), "float32"),
"bert/encoder/layer_4/output/LayerNorm/gamma": ((768,), "float32"),
"bert/encoder/layer_4/output/LayerNorm/beta": ((768,), "float32"),
"bert/encoder/layer_7/output/dense/kernel": ((3072, 768), "float32"),
"bert/encoder/layer_4/intermediate/dense/kernel": ((768, 3072), "float32"),
"bert/encoder/layer_9/attention/self/key/bias": ((768,), "float32"),
"bert/encoder/layer_10/attention/self/key/bias": ((768,), "float32"),
"bert/encoder/layer_6/attention/self/value/kernel": ((768, 768), "float32"),
"bert/encoder/layer_4/attention/self/query/bias": ((768,), "float32"),
"cls/seq_relationship/output_weights": ((2, 768), "float32"),
"bert/encoder/layer_7/intermediate/dense/kernel": ((768, 3072), "float32"),
"bert/encoder/layer_4/attention/output/dense/kernel": ((768, 768), "float32"),
"bert/encoder/layer_4/attention/output/dense/bias": ((768,), "float32"),
"bert/encoder/layer_4/attention/output/LayerNorm/gamma": ((768,), "float32"),
"bert/encoder/layer_3/output/dense/kernel": ((3072, 768), "float32"),
"bert/encoder/layer_1/output/LayerNorm/beta": ((768,), "float32"),
"bert/encoder/layer_2/attention/self/value/bias": ((768,), "float32"),
"bert/encoder/layer_8/attention/self/query/kernel": ((768, 768), "float32"),
"bert/encoder/layer_4/output/dense/kernel": ((3072, 768), "float32"),
"bert/encoder/layer_3/output/dense/bias": ((768,), "float32"),
"bert/encoder/layer_4/attention/self/value/bias": ((768,), "float32"),
"bert/encoder/layer_3/intermediate/dense/bias": ((3072,), "float32"),
"bert/encoder/layer_1/intermediate/dense/bias": ((3072,), "float32"),
"bert/encoder/layer_3/attention/self/value/kernel": ((768, 768), "float32"),
"bert/encoder/layer_10/attention/self/value/bias": ((768,), "float32"),
"bert/encoder/layer_3/attention/self/query/bias": ((768,), "float32"),
"bert/encoder/layer_1/attention/self/key/kernel": ((768, 768), "float32"),
"bert/encoder/layer_0/attention/self/query/kernel": ((768, 768), "float32"),
"bert/encoder/layer_10/output/dense/bias": ((768,), "float32"),
"bert/encoder/layer_3/attention/self/key/kernel": ((768, 768), "float32"),
"bert/encoder/layer_3/attention/output/dense/kernel": ((768, 768), "float32"),
"bert/encoder/layer_1/output/LayerNorm/gamma": ((768,), "float32"),
"bert/encoder/layer_3/attention/output/dense/bias": ((768,), "float32"),
"bert/encoder/layer_1/attention/output/dense/bias": ((768,), "float32"),
"bert/encoder/layer_3/attention/output/LayerNorm/gamma": ((768,), "float32"),
"bert/encoder/layer_2/output/dense/bias": ((768,), "float32"),
"bert/encoder/layer_6/attention/self/key/bias": ((768,), "float32"),
"bert/encoder/layer_11/attention/output/dense/kernel": ((768, 768), "float32"),
"bert/encoder/layer_2/intermediate/dense/kernel": ((768, 3072), "float32"),
"bert/encoder/layer_2/attention/self/key/kernel": ((768, 768), "float32"),
"bert/encoder/layer_2/attention/output/dense/bias": ((768,), "float32"),
"bert/encoder/layer_2/attention/self/key/bias": ((768,), "float32"),
"bert/encoder/layer_6/attention/self/query/bias": ((768,), "float32"),
"bert/encoder/layer_11/intermediate/dense/kernel": ((768, 3072), "float32"),
"bert/encoder/layer_6/output/LayerNorm/beta": ((768,), "float32"),
"bert/encoder/layer_11/intermediate/dense/bias": ((3072,), "float32"),
"bert/encoder/layer_11/attention/self/query/bias": ((768,), "float32"),
"bert/encoder/layer_11/attention/self/value/kernel": ((768, 768), "float32"),
"bert/encoder/layer_10/output/LayerNorm/gamma": ((768,), "float32"),
"bert/encoder/layer_11/attention/self/key/kernel": ((768, 768), "float32"),
"bert/encoder/layer_6/attention/self/key/kernel": ((768, 768), "float32"),
"bert/encoder/layer_6/attention/output/LayerNorm/beta": ((768,), "float32"),
"bert/encoder/layer_11/attention/self/key/bias": ((768,), "float32"),
"bert/encoder/layer_10/attention/self/value/kernel": ((768, 768), "float32"),
"bert/encoder/layer_4/intermediate/dense/bias": ((3072,), "float32"),
"bert/encoder/layer_11/attention/output/dense/bias": ((768,), "float32"),
"bert/encoder/layer_10/attention/self/query/bias": ((768,), "float32"),
"bert/embeddings/LayerNorm/gamma": ((768,), "float32"),
"bert/encoder/layer_2/attention/output/LayerNorm/gamma": ((768,), "float32"),
"bert/encoder/layer_11/output/dense/kernel": ((3072, 768), "float32"),
"bert/encoder/layer_11/attention/output/LayerNorm/beta": ((768,), "float32"),
"bert/encoder/layer_5/output/dense/kernel": ((3072, 768), "float32"),
"bert/encoder/layer_3/attention/self/key/bias": ((768,), "float32"),
"bert/encoder/layer_10/output/LayerNorm/beta": ((768,), "float32"),
"bert/encoder/layer_10/intermediate/dense/kernel": ((768, 3072), "float32"),
"bert/embeddings/word_embeddings": ((30522, 768), "float32"),
"bert/encoder/layer_9/output/dense/kernel": ((3072, 768), "float32"),
"bert/encoder/layer_9/attention/self/value/bias": ((768,), "float32"),
"bert/encoder/layer_6/attention/output/LayerNorm/gamma": ((768,), "float32"),
"bert/encoder/layer_10/intermediate/dense/bias": ((3072,), "float32"),
"bert/encoder/layer_6/attention/self/value/bias": ((768,), "float32"),
"bert/encoder/layer_1/attention/output/LayerNorm/gamma": ((768,), "float32"),
"bert/encoder/layer_5/attention/self/value/bias": ((768,), "float32"),
"bert/encoder/layer_2/output/LayerNorm/beta": ((768,), "float32"),
"bert/encoder/layer_0/output/dense/bias": ((768,), "float32"),
"bert/encoder/layer_3/intermediate/dense/kernel": ((768, 3072), "float32"),
"cls/predictions/output_bias": ((30522,), "float32"),
"bert/encoder/layer_0/attention/self/value/bias": ((768,), "float32"),
"bert/encoder/layer_6/output/dense/bias": ((768,), "float32"),
"bert/encoder/layer_0/attention/output/dense/kernel": ((768, 768), "float32"),
"bert/encoder/layer_2/attention/output/LayerNorm/beta": ((768,), "float32"),
"bert/encoder/layer_10/attention/output/LayerNorm/beta": ((768,), "float32"),
"bert/encoder/layer_5/attention/self/query/bias": ((768,), "float32"),
"bert/encoder/layer_4/attention/self/query/kernel": ((768, 768), "float32"),
"bert/encoder/layer_0/attention/self/key/kernel": ((768, 768), "float32"),
"bert/encoder/layer_0/output/dense/kernel": ((3072, 768), "float32"),
"bert/encoder/layer_10/attention/output/LayerNorm/gamma": ((768,), "float32"),
"bert/encoder/layer_7/attention/output/dense/bias": ((768,), "float32"),
"bert/encoder/layer_3/output/LayerNorm/gamma": ((768,), "float32"),
"bert/encoder/layer_2/attention/self/query/bias": ((768,), "float32"),
"bert/encoder/layer_8/output/dense/kernel": ((3072, 768), "float32"),
"bert/embeddings/LayerNorm/beta": ((768,), "float32"),
"bert/encoder/layer_1/attention/self/value/kernel": ((768, 768), "float32"),
"bert/encoder/layer_10/attention/output/dense/kernel": ((768, 768), "float32"),
"bert/encoder/layer_2/intermediate/dense/bias": ((3072,), "float32"),
"bert/encoder/layer_6/intermediate/dense/bias": ((3072,), "float32"),
"bert/encoder/layer_2/attention/output/dense/kernel": ((768, 768), "float32"),
"bert/encoder/layer_11/attention/self/value/bias": ((768,), "float32"),
"bert/encoder/layer_9/attention/output/dense/bias": ((768,), "float32"),
"bert/encoder/layer_0/attention/output/LayerNorm/gamma": ((768,), "float32"),
"bert/encoder/layer_10/attention/output/dense/bias": ((768,), "float32"),
"bert/encoder/layer_10/output/dense/kernel": ((3072, 768), "float32"),
"bert/encoder/layer_1/attention/output/dense/kernel": ((768, 768), "float32"),
"bert/encoder/layer_8/attention/self/key/bias": ((768,), "float32"),
"bert/encoder/layer_0/intermediate/dense/bias": ((3072,), "float32"),
"bert/encoder/layer_1/intermediate/dense/kernel": ((768, 3072), "float32"),
"bert/encoder/layer_1/attention/self/key/bias": ((768,), "float32"),
"bert/encoder/layer_7/attention/output/dense/kernel": ((768, 768), "float32"),
"bert/encoder/layer_2/attention/self/query/kernel": ((768, 768), "float32"),
"bert/encoder/layer_8/attention/output/dense/bias": ((768,), "float32"),
"cls/predictions/transform/dense/kernel": ((768, 768), "float32"),
"bert/encoder/layer_6/attention/self/query/kernel": ((768, 768), "float32"),
"bert/encoder/layer_5/attention/self/key/kernel": ((768, 768), "float32"),
"bert/encoder/layer_0/attention/self/value/kernel": ((768, 768), "float32"),
"bert/encoder/layer_7/attention/self/query/bias": ((768,), "float32"),
"bert/encoder/layer_7/attention/self/key/bias": ((768,), "float32"),
"bert/encoder/layer_1/output/dense/kernel": ((3072, 768), "float32"),
"bert/encoder/layer_11/attention/output/LayerNorm/gamma": ((768,), "float32"),
"bert/encoder/layer_4/attention/output/LayerNorm/beta": ((768,), "float32"),
"bert/encoder/layer_1/attention/output/LayerNorm/beta": ((768,), "float32"),
"bert/encoder/layer_9/attention/output/dense/kernel": ((768, 768), "float32"),
"bert/encoder/layer_2/output/LayerNorm/gamma": ((768,), "float32"),
"bert/encoder/layer_0/output/LayerNorm/gamma": ((768,), "float32"),
"bert/encoder/layer_10/attention/self/query/kernel": ((768, 768), "float32"),
"bert/encoder/layer_1/attention/self/query/bias": ((768,), "float32"),
"bert/encoder/layer_3/output/LayerNorm/beta": ((768,), "float32"),
"bert/encoder/layer_6/attention/output/dense/kernel": ((768, 768), "float32"),
"bert/encoder/layer_1/attention/self/query/kernel": ((768, 768), "float32"),
"bert/encoder/layer_11/output/dense/bias": ((768,), "float32"),
"cls/predictions/transform/dense/bias": ((768,), "float32"),
"bert/encoder/layer_0/intermediate/dense/kernel": ((768, 3072), "float32"),
"bert/encoder/layer_11/attention/self/query/kernel": ((768, 768), "float32"),
"bert/encoder/layer_0/attention/self/key/bias": ((768,), "float32"),
"bert/encoder/layer_0/attention/output/dense/bias": ((768,), "float32"),
"bert/encoder/layer_7/attention/output/LayerNorm/gamma": ((768,), "float32"),
"bert/encoder/layer_4/attention/self/key/bias": ((768,), "float32"),
"bert/encoder/layer_10/attention/self/key/kernel": ((768, 768), "float32"),
"bert/embeddings/position_embeddings": ((512, 768), "float32"),
"bert/encoder/layer_1/output/dense/bias": ((768,), "float32"),
"bert/encoder/layer_9/intermediate/dense/kernel": ((768, 3072), "float32"),
"bert/encoder/layer_0/output/LayerNorm/beta": ((768,), "float32"),
"bert/pooler/dense/bias": ((768,), "float32"),
"bert/encoder/layer_0/attention/output/LayerNorm/beta": ((768,), "float32"),
}
# pylint: enable=line-too-long
def create_base_checkpoint():
"""Returns path to fake Bert "base" checkpoint directory (zero init)."""
directory = tempfile.mkdtemp()
path = f"{directory}/bert_model.ckpt"
with tf.Session() as sess:
for name, (shape, dtype) in _BASE_SHAPES_DTYPES.items():
tf.Variable(tf.zeros(shape, dtype), name=name)
saver = tf.train.Saver()
sess.run(tf.global_variables_initializer())
saver.save(sess, path)
return directory
|