File size: 5,485 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Invertible adaptor based on iRevNet.

Based on the PyTorch version from:
https://github.com/jhjacobsen/pytorch-i-revnet/blob/master/models/iRevNet.py
"""

from typing import Any, Optional, Sequence

from big_vision import utils
from big_vision.models import common
from big_vision.models.proj.givt import cnn
import einops
import flax.core
import flax.linen as nn
import jax
import jax.numpy as jnp


def _split(x: jax.Array) -> tuple[jax.Array, jax.Array]:
  n = x.shape[-1] // 2
  x1 = x[:, :, :, :n]
  x2 = x[:, :, :, n:]
  return x1, x2


def _merge(x1: jax.Array, x2: jax.Array) -> jax.Array:
  return jnp.concatenate((x1, x2), axis=-1)


class IRevNetBlock(nn.Module):
  """iRevNet Block."""
  first: int = False
  dropout_rate: float = 0.
  num_channels: int = 2
  num_channels_bottleneck: Optional[int] = None
  num_grps_norm: int = 32

  @nn.compact
  def _fx2(self, x: jax.Array, train: bool = True) -> jax.Array:
    if not self.first:
      y = nn.GroupNorm(num_groups=self.num_grps_norm, name="gn_0")(x)
      y = nn.relu(y)
    else:
      y = x

    ks = (3, 3)     # hardcode kernel-size 3 for now
    y = nn.Conv(self.num_channels_bottleneck or self.num_channels,
                kernel_size=ks, padding=1, use_bias=False)(y)
    y = nn.GroupNorm(num_groups=self.num_grps_norm, name="gn_1")(y)
    y = nn.relu(y)

    y = nn.Conv(self.num_channels_bottleneck or self.num_channels,
                kernel_size=ks, padding=1, use_bias=False)(y)
    y = nn.Dropout(rate=self.dropout_rate, deterministic=(not train))(y)
    y = nn.GroupNorm(num_groups=self.num_grps_norm, name="gn_2")(y)
    y = nn.relu(y)

    y = nn.Conv(self.num_channels, kernel_size=ks, padding=1, use_bias=False)(y)

    return y

  def forward(
      self,
      x: tuple[jax.Array, jax.Array],
      train: bool = True,
  ) -> tuple[jax.Array, jax.Array]:
    """Bijective block forward."""
    x1, x2 = x[0], x[1]
    fx2 = self._fx2(x2, train=train)
    y1 = fx2 + x1
    return (x2, y1)

  def inverse(self,
              x: tuple[jax.Array, jax.Array],
              train: bool = True
              ) -> tuple[jax.Array, jax.Array]:
    """Bijective block inverse."""
    x2, y1 = x[0], x[1]
    fx2 = -self._fx2(x2, train=train)
    x1 = fx2 + y1
    return (x1, x2)


class IRevNet(nn.Module):
  """iRevNet."""
  num_blocks: int = 4
  num_channels: int = 4
  num_channels_bottleneck: Optional[int] = None
  dropout_rate: float = 0.0

  def setup(self) -> None:
    num_grps_norm = min(32, self.num_channels // 2)
    self.modules = [
        IRevNetBlock(
            first=(i == 0),
            num_channels=self.num_channels // 2,
            num_channels_bottleneck=(
                self.num_channels_bottleneck or self.num_channels) // 2,
            num_grps_norm=num_grps_norm,
            dropout_rate=self.dropout_rate,
        )
        for i in range(self.num_blocks)
    ]

  def forward(self, x: jax.Array, train: bool = True) -> jax.Array:
    out = _split(x)
    for m in self.modules:
      out = m.forward(out, train=train)
    out_bij = _merge(out[0], out[1])
    return out_bij

  def inverse(self, out_bij: jax.Array, train: bool = True) -> jax.Array:
    out = _split(out_bij)
    for m in reversed(self.modules):
      out = m.inverse(out, train=train)
    out = _merge(out[0], out[1])
    return out

  def __call__(self, x: jax.Array, train: bool = True) -> jax.Array:
    return self.forward(x, train=train)


class Model(IRevNet):
  """Wrapper for IRevNet to function as an adaptor in our setup."""

  pixel_shuffle_patch_size: tuple[int, int] = (1, 1)

  def forward(self, x: jax.Array, train: bool = True) -> jax.Array:
    # (b, code_len, ch) --> (b, h, w, ch) --> (b, code_len, ch)
    # h, w are the spatial dimensions after space-to-depth transformation
    h, w = cnn.get_h_w_pixelshuffle(x.shape[1], self.pixel_shuffle_patch_size)
    x = einops.rearrange(x, "b (h w) c -> b h w c", h=h, w=w)
    x = super().forward(x, train)
    x = einops.rearrange(x, "b h w c -> b (h w) c")   # (b, codelen, codeword_d)

    return x

  def inverse(self, out_bij: jax.Array, train: bool = True) -> jax.Array:
    # (b, code_len, ch) --> (b, h, w, ch) --> (b, code_len, ch)
    h, w = cnn.get_h_w_pixelshuffle(
        out_bij.shape[1], self.pixel_shuffle_patch_size)
    out_bij = einops.rearrange(out_bij, "b (h w) c -> b h w c", h=h, w=w)
    out_bij = super().inverse(out_bij, train)
    out_bij = einops.rearrange(out_bij, "b h w c -> b (h w) c")

    return out_bij


def load(
    init_params: Any,
    init_file: str,
    model_params: Any = None,
    dont_load: Sequence[str] = (),
) -> Any:
  """Loads params from init checkpoint and merges into init_params."""
  del model_params
  ckpt_params = flax.core.unfreeze(utils.load_params(init_file))
  if init_params is not None:
    ckpt_params = common.merge_params(ckpt_params, init_params, dont_load)
  return ckpt_params