File size: 12,041 Bytes
74e8f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""CNN encoder/decoder architecture based on the VQ-GAN and MaskGIT papers.
Adapted from https://github.com/google-research/maskgit/blob/main/maskgit/nets/vqgan_tokenizer.py. # pylint: disable=line-too-long
"""
import dataclasses
import functools
import math
from typing import Any, Sequence
from big_vision import utils
from big_vision.models import common
from big_vision.models.proj.givt import vae
import einops
import flax.linen as nn
import flax.training.checkpoints
import jax
import jax.numpy as jnp
def _get_norm_layer(train, dtype, norm_type="BN"):
"""Create normalization layers.
Args:
train: Whether to use the layer in training or inference mode.
dtype: Layer output type.
norm_type: Which normalization to use "BN", "LN", or "GN".
Returns:
An instance of the the layer.
"""
if norm_type == "BN":
return functools.partial(
nn.BatchNorm,
use_running_average=not train,
momentum=0.9,
epsilon=1e-5,
axis_name=None,
axis_index_groups=None,
dtype=jnp.float32,
use_fast_variance=False)
elif norm_type == "LN":
return functools.partial(nn.LayerNorm, dtype=dtype, use_fast_variance=False)
elif norm_type == "GN":
return functools.partial(nn.GroupNorm, dtype=dtype, use_fast_variance=False)
else:
raise NotImplementedError
def _tensorflow_style_avg_pooling(x, window_shape, strides, padding: str):
"""Avg pooling as done by TF (Flax layer gives different results).
To be specific, Flax includes padding cells when taking the average,
while TF does not.
Args:
x: Input tensor
window_shape: Shape of pooling window; if 1-dim tuple is just 1d pooling, if
2-dim tuple one gets 2d pooling.
strides: Must have the same dimension as the window_shape.
padding: Either 'SAME' or 'VALID' to indicate pooling method.
Returns:
pooled: Tensor after applying pooling.
"""
pool_sum = jax.lax.reduce_window(x, 0.0, jax.lax.add,
(1,) + window_shape + (1,),
(1,) + strides + (1,), padding)
pool_denom = jax.lax.reduce_window(
jnp.ones_like(x), 0.0, jax.lax.add, (1,) + window_shape + (1,),
(1,) + strides + (1,), padding)
return pool_sum / pool_denom
def _upsample(x, factor=2, method="nearest"):
n, h, w, c = x.shape
x = jax.image.resize(x, (n, h * factor, w * factor, c), method=method)
return x
def _dsample(x):
return _tensorflow_style_avg_pooling(
x, (2, 2), strides=(2, 2), padding="same")
def get_h_w_pixelshuffle(hw, pixel_shuffle_patch_size):
# Compute h, w after space-to-depth transformation and before flattening,
# assuming the imge before space-to-depth transformation was square.
ph, pw = pixel_shuffle_patch_size
s = int(math.sqrt(hw * ph * pw))
h, w = s // ph, s // pw
assert h * w == hw, f"Length {hw} incompatible with pixelshuffle ({ph}, {pw})"
return h, w
class ResBlock(nn.Module):
"""Basic Residual Block."""
filters: int
norm_fn: Any
conv_fn: Any
dtype: int = jnp.float32
activation_fn: Any = nn.relu
use_conv_shortcut: bool = False
@nn.compact
def __call__(self, x: jax.Array) -> jax.Array:
input_dim = x.shape[-1]
residual = x
x = self.norm_fn()(x)
x = self.activation_fn(x)
x = self.conv_fn(self.filters, kernel_size=(3, 3), use_bias=False)(x)
x = self.norm_fn()(x)
x = self.activation_fn(x)
x = self.conv_fn(self.filters, kernel_size=(3, 3), use_bias=False)(x)
if input_dim != self.filters:
if self.use_conv_shortcut:
residual = self.conv_fn(
self.filters, kernel_size=(3, 3), use_bias=False)(
x)
else:
residual = self.conv_fn(
self.filters, kernel_size=(1, 1), use_bias=False)(
x)
return x + residual
class Encoder(nn.Module):
"""Encoder Blocks."""
filters: int
num_res_blocks: int
channel_multipliers: list[int]
embedding_dim: int
conv_downsample: bool = False
norm_type: str = "GN"
activation_fn_str: str = "swish"
dtype: int = jnp.float32
def setup(self) -> None:
if self.activation_fn_str == "relu":
self.activation_fn = nn.relu
elif self.activation_fn_str == "swish":
self.activation_fn = nn.swish
else:
raise NotImplementedError
@nn.compact
def __call__(self, x: jax.Array, train: bool = False) -> jax.Array:
conv_fn = nn.Conv
norm_fn = _get_norm_layer(
train=train, dtype=self.dtype, norm_type=self.norm_type)
block_args = dict(
norm_fn=norm_fn,
conv_fn=conv_fn,
dtype=self.dtype,
activation_fn=self.activation_fn,
use_conv_shortcut=False,
)
x = conv_fn(self.filters, kernel_size=(3, 3), use_bias=False)(x)
num_blocks = len(self.channel_multipliers)
for i in range(num_blocks):
filters = self.filters * self.channel_multipliers[i]
for _ in range(self.num_res_blocks):
x = ResBlock(filters, **block_args)(x)
if i < num_blocks - 1:
if self.conv_downsample:
x = conv_fn(filters, kernel_size=(4, 4), strides=(2, 2))(x)
else:
x = _dsample(x)
for _ in range(self.num_res_blocks):
x = ResBlock(filters, **block_args)(x)
x = norm_fn()(x)
x = self.activation_fn(x)
x = conv_fn(self.embedding_dim, kernel_size=(1, 1))(x)
return x
class Decoder(nn.Module):
"""Decoder Blocks."""
filters: int
num_res_blocks: int
channel_multipliers: list[int]
norm_type: str = "GN"
activation_fn_str: str = "swish"
output_dim: int = 3
dtype: Any = jnp.float32
def setup(self) -> None:
if self.activation_fn_str == "relu":
self.activation_fn = nn.relu
elif self.activation_fn_str == "swish":
self.activation_fn = nn.swish
else:
raise NotImplementedError
@nn.compact
def __call__(self, x: jax.Array, train: bool = False) -> jax.Array:
conv_fn = nn.Conv
norm_fn = _get_norm_layer(
train=train, dtype=self.dtype, norm_type=self.norm_type)
block_args = dict(
norm_fn=norm_fn,
conv_fn=conv_fn,
dtype=self.dtype,
activation_fn=self.activation_fn,
use_conv_shortcut=False,
)
num_blocks = len(self.channel_multipliers)
filters = self.filters * self.channel_multipliers[-1]
x = conv_fn(filters, kernel_size=(3, 3), use_bias=True)(x)
for _ in range(self.num_res_blocks):
x = ResBlock(filters, **block_args)(x)
for i in reversed(range(num_blocks)):
filters = self.filters * self.channel_multipliers[i]
for _ in range(self.num_res_blocks):
x = ResBlock(filters, **block_args)(x)
if i > 0:
x = _upsample(x, 2)
x = conv_fn(filters, kernel_size=(3, 3))(x)
x = norm_fn()(x)
x = self.activation_fn(x)
x = conv_fn(self.output_dim, kernel_size=(3, 3))(x)
return x
class Model(vae.Model):
"""CNN Model."""
filters: int = 128
num_res_blocks: int = 2
channel_multipliers: list[int] = dataclasses.field(default_factory=list)
conv_downsample: bool = False
activation_fn: str = "swish"
norm_type: str = "GN"
output_dim: int = 3
dtype: Any = jnp.float32
# If True, rescale the input [-1, 1] -> [0, 1] and clip logvar to [-30, 20]
malib_ckpt: bool = False
pixel_shuffle_patch_size: tuple[int, int] = (1, 1)
def setup(self) -> None:
# Encoder and decoder
self.encoder = Encoder(
filters=self.filters,
num_res_blocks=self.num_res_blocks,
channel_multipliers=self.channel_multipliers,
norm_type=self.norm_type,
activation_fn_str=self.activation_fn,
embedding_dim=2 * self.codeword_dim,
conv_downsample=self.conv_downsample,
dtype=self.dtype,
name="cnn_encoder",
)
self.decoder = Decoder(
filters=self.filters,
num_res_blocks=self.num_res_blocks,
channel_multipliers=self.channel_multipliers,
norm_type=self.norm_type,
activation_fn_str=self.activation_fn,
output_dim=self.output_dim,
dtype=self.dtype,
name="cnn_decoder",
)
def _maybe_rescale_input(self, x):
return (x + 1.0) / 2.0 if self.malib_ckpt else x
def _maybe_rescale_output(self, x):
return 2.0 * x - 1.0 if self.malib_ckpt else x
def _maybe_clip_logvar(self, logvar):
return jnp.clip(logvar, -30.0, 20.0) if self.malib_ckpt else logvar
def encode(
self,
x: jax.Array,
*,
train: bool = False,
) -> tuple[jax.Array, jax.Array]:
x = self._maybe_rescale_input(x)
x = self.encoder(x, train=train) # (2, 16, 16, 64)
assert x.shape[1] == x.shape[2], f"Square spatial dims. required: {x.shape}"
mu, logvar = jnp.split(x, 2, axis=-1) # (2, 16, 16, 32) x 2
logvar = self._maybe_clip_logvar(logvar)
def _space_to_depth(z):
ph, pw = self.pixel_shuffle_patch_size
return einops.rearrange(
z, "b (h ph) (w pw) c -> b (h w) (c ph pw)",
ph=ph, pw=pw
) # (2, 256 // (ph * pw), 64 * ph * pw)
mu, logvar = _space_to_depth(mu), _space_to_depth(logvar)
return mu, logvar
def decode(self, x: jax.Array, train: bool = False) -> jax.Array:
# Decode
ph, pw = self.pixel_shuffle_patch_size
h, w = get_h_w_pixelshuffle(x.shape[1], (ph, pw))
x = einops.rearrange(
x, "b (h w) (c ph pw) -> b (h ph) (w pw) c",
h=h, w=w,
ph=ph, pw=pw
) # (2, 16, 16, 32)
x = self.decoder(x, train=train) # (2, 256, 256, 3)
x = self._maybe_rescale_output(x)
x = jnp.clip(x, -1.0, 1.0)
return x
def load(
init_params: Any,
init_file: str,
model_params: Any = None,
dont_load: Sequence[str] = (),
malib_ckpt: bool = False,
use_ema_params: bool = False,
) -> Any:
"""Loads params from init checkpoint and merges into init_params.
Args:
init_params: pytree with (previously initialized) model parameters.
init_file: Path of the checkpoint to load.
model_params: Dict containing the model config.
dont_load: Sequence of (flattened) parameter names which should not be
loaded.
malib_ckpt: Whether the given init_file is a malib checkpoint.
use_ema_params: Whether to load the EMA params (for malib checkpoints).
Returns:
pytree containing the loaded model parameters.
"""
# `model_params` is unused here, but we still include it to conform with the
# general big_vision interface, cf. the core models in big_vision/models/.
del model_params
assert malib_ckpt or (not use_ema_params), (
"Loading EMA parameters is only supported for malib checkpoints.")
if malib_ckpt:
# Locally disable transfer guard since restore_checkpoint does not allow for
# fine-grained sharding control.
with jax.transfer_guard("allow"):
vaegan_params = flax.training.checkpoints.restore_checkpoint(
init_file, None)
vaegan_params_flat = utils.tree_flatten_with_names(vaegan_params)[0]
prefix_old = "ema_params/" if use_ema_params else "g_params/"
vaegan_params_flat = [(k.replace(prefix_old, "cnn_"), v)
for k, v in vaegan_params_flat if prefix_old in k]
params = utils.tree_unflatten(vaegan_params_flat)
else:
params = flax.core.unfreeze(utils.load_params(init_file))
if init_params is not None:
params = common.merge_params(params, init_params, dont_load)
return params
|