File size: 12,894 Bytes
74e8f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Autorgregressive sampler for GIVT."""
import functools
from typing import Any, Optional
from big_vision.models.proj.givt import parallel_decode
import flax
from flax import linen as nn
import jax
from jax import lax
from jax import numpy as jnp
import ml_collections
def _sample_gmm(
gmm_pdf,
*,
rng,
cfg_inference_weight=None,
gmm_pdf_uncond=None,
):
"""Draw a single sample from a GMM."""
if cfg_inference_weight is not None:
assert gmm_pdf_uncond is not None
gmm_pdf = parallel_decode.CFGDensity(
gmm_pdf, gmm_pdf_uncond, w=cfg_inference_weight, rng=rng
)
samples = gmm_pdf.sample(seed=rng)
logprobs = gmm_pdf.log_prob(samples)
if logprobs.ndim == 2:
logprobs = logprobs[..., None]
return samples, logprobs
# Beam search reshaping utils
def _flatten_samples_dim(x):
"""Flattens samples dimension into batch dimension."""
if x.ndim == 0: # ignore scalars (e.g. cache index)
return x
return x.reshape((x.shape[0] * x.shape[1],) + x.shape[2:])
def _unflatten_samples_dim(x, batch_size, num_samples):
"""Unflattens first dimension into batch and samples dimensions."""
if x.ndim == 0: # ignore scalars (e.g. cache index)
return x
assert batch_size * num_samples == x.shape[0]
return x.reshape((batch_size, num_samples) + x.shape[1:])
def _cache_map(fn, cache, scan=False):
"""Maps function over cache."""
if scan:
# Assuming the chache is scanned over the first dimension, we apply a map
# function over this dimension for scanned models
fn_mod = lambda x: jax.lax.map(fn, x) if x.ndim > 0 else fn(x)
else:
fn_mod = fn
frozen = isinstance(cache, flax.core.FrozenDict)
if frozen:
cache = flax.core.unfreeze(cache)
flat_cache = flax.traverse_util.flatten_dict(cache)
# Exclude cached relative position bias from beam expansion, etc.
keyvals = {k: v for k, v in flat_cache.items() if k[-1] != "cached_bias"}
keyvals = jax.tree_map(fn_mod, keyvals)
flat_cache.update(keyvals)
new_cache = flax.traverse_util.unflatten_dict(flat_cache)
if frozen:
new_cache = flax.core.freeze(new_cache)
return new_cache
@flax.struct.dataclass
class LoopState:
"""Internal state of the sampling loop."""
# Terminology
# b: batch size
# nb: number of beams
# nf: number of fans
# s: seaquence length
# d: feature dimension
rng: jnp.ndarray # PRNGKey of the loop state.
cache: Any # Cache for fast auto-regressive decoding.
sequences: jnp.ndarray # (b * nb, s, d)
logprobs: jnp.ndarray # (b * nb, s, d)
cache_u: Any # Uncond cache if cfg, otherwise None
def _create_cache(
labels,
model,
init_sequence,
params,
encoded,
uncond=False,
):
"""Creates the cache and returns initial logits."""
if uncond:
assert labels is not None # Need labels for CFG!
drop_labels = jnp.ones((labels.shape[0],), dtype=jnp.bool_)
else:
drop_labels = None
def init_cache(model):
return model.decode(
init_sequence, labels, encoded, decode=True, drop_labels=drop_labels
)
cache = nn.apply(init_cache, model, mutable=True)(params)[1]["cache"]
def prefill_cache(model):
return model.prefill(
labels, init_sequence.shape[0], encoded, drop_labels=drop_labels
)
# prefill class label or BOS token
prefill_logits, aux = nn.apply(prefill_cache, model, mutable=True)(
{"params": params["params"], "cache": cache})
cache = aux["cache"]
return cache, prefill_logits
def generate(
params: Any,
seed: jax.Array,
*,
model: nn.Module,
seq_len: int,
feature_dim: int,
labels: Optional[jnp.ndarray] = None,
cond_image: Optional[jnp.ndarray] = None,
batch_size: Optional[int] = None,
config: Optional[ml_collections.ConfigDict] = None,
) -> tuple[jax.Array, jax.Array]:
"""Sampling loop for GIVT."""
if model.style != "ar": # pytype: disable=wrong-arg-types
raise ValueError(f"Invalid style: {model.style}")
if model.has_encoder != (cond_image is not None):
raise ValueError("Need cond_image if and only if the model has an encoder!")
assert labels is not None or batch_size, (
"Please provide either labels or batch_size.")
config = config or {}
config = dict(config) # copy
# For sampling, we support keep_gt (a bool mask), and gt (ground truth)
# tokens to use instead of samples.
keep_gt = config.pop("keep_gt", None)
gt = config.pop("gt", None)
if isinstance(seed, int):
seed = jax.random.PRNGKey(seed)
beam_size = config.pop("beam_size", 1)
fan_size = config.pop("fan_size", 1)
if labels is not None:
batch_size = labels.shape[0]
# fold beams into batch dimension
labels = labels.repeat(beam_size, axis=0)
# initialize sequence and logprobs (we track per feature dim logprobs)
init_sequence = jnp.zeros((batch_size * beam_size, seq_len, feature_dim))
init_logprobs = jnp.zeros_like(init_sequence)
if cond_image is not None:
# embed conditioning image if provided
def encode_cond_img(model, cond_img):
return model.encode(cond_img)
encoded = nn.apply(encode_cond_img, model)(params, cond_image)
encoded = jnp.repeat(encoded, beam_size, axis=0)
else:
encoded = None
cache, prefill_logits = _create_cache(
labels, model, init_sequence, params, encoded
)
cfg_inference_weight = config.pop("cfg_inference_weight", None)
if cfg_inference_weight == 0.0:
cfg_inference_weight = None
cfg = cfg_inference_weight is not None
get_pdf = functools.partial(
model.get_pdf,
temperature_scales=config.pop("temp", None),
temperature_probs=config.pop("temp_probs", None),
)
# setup sampling function
sample = functools.partial(
_sample_gmm, cfg_inference_weight=cfg_inference_weight
)
# draw first output token
pdf_first = get_pdf(prefill_logits)
rng_first, rng = jax.random.split(seed)
if cfg:
assert beam_size == 1 and fan_size == 1 # CFG + Beam not supported.
cache_u, prefill_logits_u = _create_cache(
labels, model, init_sequence, params, encoded, uncond=True
)
pdf_first_u = get_pdf(prefill_logits_u)
else:
cache_u = None
pdf_first_u = None
tokens_first, logprobs_first = sample(
pdf_first, rng=rng_first, gmm_pdf_uncond=pdf_first_u
)
init_sequence = init_sequence.at[:, 0].set(tokens_first.squeeze(axis=1))
init_logprobs = init_logprobs.at[:, 0].set(logprobs_first.squeeze(axis=1))
def tokens_to_logits(tokens, cache, uncond=False):
if uncond:
drop_labels = jnp.ones((labels.shape[0],), dtype=jnp.bool_)
else:
drop_labels = None
def decode_step(model, tokens):
return model.decode(tokens, labels, encoded,
decode=True, drop_labels=drop_labels)
logits, aux = nn.apply(decode_step, model, mutable=True)(
{"params": params["params"], "cache": cache}, tokens)
return logits, aux["cache"]
init_state = LoopState(
cache=cache,
sequences=init_sequence, # (b * nb, s, d)
logprobs=init_logprobs, # (b * nb, s, d)
rng=rng,
cache_u=cache_u,
)
rand_top_k = config.pop("rand_top_k", False)
rand_top_k_temp = config.pop("rand_top_k_temp", 1.0)
assert not config, f"Sampling config is expected to be empty: {config}"
def sampling_iteration(i, state):
rng_sampling, rng_local = jax.random.split(state.rng)
cur_tokens = state.sequences[:, i][:, None]
# (b * nb, d)
cur_logits, cache = tokens_to_logits(cur_tokens, state.cache)
# (b, nb, d)
cur_logits = _unflatten_samples_dim(
cur_logits, batch_size, beam_size).squeeze(axis=2)
# (b, nb * nf, d)
cur_pdf = get_pdf(cur_logits.repeat(fan_size, axis=1))
if cfg:
cur_logits_u, cache_u = tokens_to_logits(
cur_tokens, state.cache_u, uncond=True
)
cur_logits_u = _unflatten_samples_dim(
cur_logits_u, batch_size, beam_size).squeeze(axis=2)
cur_pdf_u = get_pdf(cur_logits_u.repeat(fan_size, axis=1))
new_tokens, new_logprobs = sample(
cur_pdf, rng=rng_sampling, gmm_pdf_uncond=cur_pdf_u
)
else:
new_tokens, new_logprobs = sample(cur_pdf, rng=rng_sampling)
cache_u = None
if gt is not None:
assert keep_gt is not None
new_tokens = jnp.where(keep_gt[i], gt[:, i, :][:, None], new_tokens)
# Skip beam search if not needed
if beam_size == fan_size == 1:
sampled_tokens = new_tokens.squeeze(axis=1)
sequences = state.sequences.at[:, i + 1].set(sampled_tokens)
return LoopState(
cache=cache,
rng=rng_local,
sequences=sequences,
logprobs=state.logprobs,
cache_u=cache_u,
)
# (b, nb, s, d)
logprobs = _unflatten_samples_dim(state.logprobs, batch_size, beam_size)
cur_logprobs = logprobs[:, :, i] # (b, nb, d)
# (b, nb * nf, d)
new_logprobs = new_logprobs + cur_logprobs.repeat(fan_size, axis=1)
beam_logprobs = new_logprobs.sum(axis=-1) # (b, nb * nf)
if rand_top_k:
# randomize top-k sampling via sampling from a categorical distribution
def stoc_top_k(r, x, p):
return jax.random.choice(r, x, shape=(beam_size,), replace=False, p=p)
# construct index grid
index_grid = jnp.arange(beam_logprobs.shape[1], dtype=jnp.int32)
# (b, nb * nf)
index_grid = index_grid[None].repeat(beam_logprobs.shape[0], axis=0)
top_k_rng, rng_local = jax.random.split(rng_local)
top_k_rng = jax.random.split(top_k_rng, beam_logprobs.shape[0])
# vmap categorical sampling
top_beam_fan_indices = jax.vmap(stoc_top_k, in_axes=(0, 0, 0))(
top_k_rng,
index_grid,
nn.softmax(beam_logprobs / rand_top_k_temp, axis=-1))
else:
_, top_beam_fan_indices = lax.top_k(beam_logprobs, k=beam_size) # (b, nb)
top_beam_indices = top_beam_fan_indices // fan_size
def _gather_beams(x):
if x.ndim == 0:
return x
# checkify.check(jnp.all(top_beam_indices < x.shape[1]),
# f"`take_along_axis` out of bounds in `_gather_beams`: "
# f"{top_beam_indices.max()} vs. {x.shape[1]}")
# (b, nb, 1 ... 1)
expanded_indices = top_beam_indices.reshape(
top_beam_indices.shape + (1,) * (x.ndim - 2))
return jnp.take_along_axis(x, expanded_indices, axis=1)
def _gather_tokens(x):
# (b, nb * nf, d) -> (b, nb, d)
# checkify.check(jnp.all(top_beam_fan_indices < x.shape[1]),
# f"`take_along_axis` out of bounds in `_gather_tokens`: "
# f"{top_beam_fan_indices.max()} vs. {x.shape[1]}")
return jnp.take_along_axis(x, top_beam_fan_indices[..., None], axis=1)
# (b, nb, s, d)
sequences = _unflatten_samples_dim(state.sequences, batch_size, beam_size)
sequences = _gather_beams(sequences) # (b, nb, s, d)
sequences = sequences.at[:, :, i + 1].set(_gather_tokens(new_tokens))
# (b, nb, s, d)
sequences = _flatten_samples_dim(sequences)
logprobs = _gather_beams(logprobs)
logprobs = logprobs.at[:, :, i + 1].set(_gather_tokens(new_logprobs))
logprobs = _flatten_samples_dim(logprobs)
scanned_cache = getattr(model, "scan", False)
cache = _cache_map(
lambda x: _unflatten_samples_dim(x, batch_size, beam_size),
cache, scanned_cache)
cache = _cache_map(_gather_beams, cache, scanned_cache)
cache = _cache_map(_flatten_samples_dim, cache, scanned_cache)
if cfg:
assert cache_u is not None
cache_u = _cache_map(
lambda x: _unflatten_samples_dim(x, batch_size, beam_size),
cache_u, scanned_cache
)
cache_u = _cache_map(_gather_beams, cache_u, scanned_cache)
cache_u = _cache_map(_flatten_samples_dim, cache_u, scanned_cache)
else:
assert cache_u is None
return LoopState(
cache=cache,
rng=rng_local,
sequences=sequences,
logprobs=logprobs,
cache_u=cache_u,
)
final_state = lax.fori_loop(0, seq_len, sampling_iteration, init_state)
final_logprobs = final_state.logprobs[::beam_size][:, -1].sum(axis=-1)
# return top beams and corresponding log probs
return final_state.sequences[::beam_size], final_logprobs
|