File size: 4,502 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from absl.testing import parameterized
from big_vision.models.proj.givt import givt
from big_vision.models.proj.givt import parallel_decode
import chex
import jax
import jax.numpy as jnp

from absl.testing import absltest


_BATCH_SIZE = 2
_OUT_DIM = 4
_SEQ_LEN = 6
_NUM_MIXTURES = 4


def _make_test_model(**overwrites):
  config = dict(
      num_heads=2,
      num_decoder_layers=1,
      mlp_dim=64,
      emb_dim=16,
      seq_len=_SEQ_LEN,
      out_dim=_OUT_DIM,
      num_mixtures=_NUM_MIXTURES,
      style="masked",
  )
  config.update(overwrites)
  return givt.Model(**config)


def _mask(*flags):
  return jnp.asarray(flags).astype(jnp.bool_)


class HelperTest(googletest.TestCase):

  def test_get_first_n(self):
    with self.subTest("ordered"):
      values = jnp.asarray([4, 3, 2, 1, 0])
      k = jnp.asarray([3], jnp.int32)
      chex.assert_trees_all_equal(
          parallel_decode._get_bottom_k_mask(values, k), _mask(0, 0, 1, 1, 1)
      )

    with self.subTest("equal_values"):
      values = jnp.ones((5,))
      k = jnp.asarray([3], jnp.int32)
      chex.assert_trees_all_equal(
          parallel_decode._get_bottom_k_mask(values, k), _mask(1, 1, 1, 0, 0)
      )

    with self.subTest("equal_values"):
      values = jnp.asarray([1, 2, 2, 2, 3])
      k = jnp.asarray([3], jnp.int32)
      chex.assert_trees_all_equal(
          parallel_decode._get_bottom_k_mask(values, k), _mask(1, 1, 1, 0, 0)
      )


class ParallelDecodeTest(parameterized.TestCase):

  def _make_model(self, **overwrites):
    model = _make_test_model(**overwrites)
    sequence = jax.random.uniform(
        jax.random.PRNGKey(0), (_BATCH_SIZE, _SEQ_LEN, _OUT_DIM)
    )
    labels = jax.random.uniform(
        jax.random.PRNGKey(0), (_BATCH_SIZE,), maxval=10
    ).astype(jnp.int32)
    input_mask = jax.random.uniform(
        jax.random.PRNGKey(0), (_BATCH_SIZE, _SEQ_LEN)
    ).astype(jnp.bool_)
    variables = model.init(
        jax.random.PRNGKey(0),
        sequence,
        labels,
        input_mask=input_mask,
        train=False,
    )
    return model, variables

  def _test_model(self, rng, model, variables, config):
    labels = jnp.ones((_BATCH_SIZE,), dtype=jnp.int32)
    state = parallel_decode.decode_masked(
        rng,
        seq_len=_SEQ_LEN,
        feature_dim=_OUT_DIM,
        labels=labels,
        model=model,
        variables=variables,
        config=config,
    )
    self.assertEqual(int(state.step), 4)
    # Each point uncovered exactly once.
    chex.assert_trees_all_equal(
        state.uncovered_per_step.sum(0),
        jnp.ones((_BATCH_SIZE, _SEQ_LEN), dtype=jnp.int32),
    )

  @parameterized.product(
      rng_seed=[1, 2],
      choice_temperature=[1.0, 4.0],
      multivariate=[True, False],
  )
  def test_decode_masked(self, rng_seed, choice_temperature, multivariate):
    rng = jax.random.PRNGKey(rng_seed)
    model, variables = self._make_model(
        num_mixtures=1 if multivariate else _NUM_MIXTURES,
        multivariate=multivariate,
    )
    config = parallel_decode.MaskedGenerationConfig(
        num_steps=4,
        choice_temperature=choice_temperature,
    )
    self._test_model(rng, model, variables, config)

  @parameterized.product(
      rng_seed=[1, 2],
      choice_temperature=[1.0, 4.0],
      w=[0.0, 1.0, 3.0],
      per_channel_mixtures=[True, False],
  )
  def test_cfg(self, rng_seed, choice_temperature, w, per_channel_mixtures):
    rng = jax.random.PRNGKey(rng_seed)
    model, variables = self._make_model(
        num_mixtures=1 if per_channel_mixtures else 3,
        drop_labels_probability=0.1,
        per_channel_mixtures=per_channel_mixtures,
    )
    config = parallel_decode.MaskedGenerationConfig(
        num_steps=4,
        choice_temperature=choice_temperature,
        cfg_inference_weight=w,
    )
    self._test_model(rng, model, variables, config)


if __name__ == "__main__":
  googletest.main()