File size: 6,132 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Simple VAE fork of the UViM VQ-VAE (proj/uvim/vit.py) with small changes."""

from typing import Optional, Sequence, Mapping, Any

from big_vision import utils
from big_vision.models import common
from big_vision.models import vit
from big_vision.models.proj.givt import vae

import einops
import flax.linen as nn
import flax.training.checkpoints
import jax
import jax.numpy as jnp
import numpy as np


class Model(vae.Model):
  """ViT model."""

  input_size: Sequence[int] = (256, 256)
  patch_size: Sequence[int] = (16, 16)
  width: int = 768
  enc_depth: int = 6
  dec_depth: int = 6
  mlp_dim: Optional[int] = None
  num_heads: int = 12
  posemb: str = "learn"  # Can also be "sincos2d"
  dropout: float = 0.0
  head_zeroinit: bool = True
  bottleneck_resize: bool = False
  inout_specs: Optional[Mapping[str, tuple[int, int]]] = None
  scan: bool = False
  remat_policy: str = "nothing_saveable"

  def setup(self) -> None:
    self.grid_size = np.array(self.input_size) // np.array(self.patch_size)

    self.embedding = nn.Conv(
        self.width, self.patch_size, strides=self.patch_size,
        padding="VALID", name="embedding")

    self.pos_embedding_encoder = vit.get_posemb(
        self, self.posemb, self.grid_size, self.width, "pos_embedding_encoder")
    self.encoder = vit.Encoder(
        depth=self.enc_depth,
        mlp_dim=self.mlp_dim,
        num_heads=self.num_heads,
        dropout=self.dropout,
        scan=self.scan,
        remat_policy=self.remat_policy,
        name="encoder")

    if not self.bottleneck_resize:
      self.bottleneck_downsample = self.param(
          "bottleneck_downsample",
          nn.initializers.xavier_uniform(),
          (np.prod(self.grid_size), self.code_len))

    if not self.bottleneck_resize:
      self.bottleneck_upsample = self.param(
          "bottleneck_upsample",
          nn.initializers.xavier_uniform(),
          (self.code_len, np.prod(self.grid_size)))

    self.pos_embedding_decoder = vit.get_posemb(
        self, self.posemb, self.grid_size, self.width, "pos_embedding_decoder")
    self.decoder = vit.Encoder(
        depth=self.dec_depth,
        mlp_dim=self.mlp_dim,
        num_heads=self.num_heads,
        dropout=self.dropout,
        scan=self.scan,
        remat_policy=self.remat_policy,
        name="decoder")

    # Setting num_outputs to 2 * codeword_dim to predict mean and variance per
    # element
    self.encoder_head = nn.Dense(self.codeword_dim * 2 or self.width * 2)
    self.decoder_stem = nn.Dense(self.width)

    kw = {"kernel_init": nn.initializers.zeros} if self.head_zeroinit else {}

    if self.inout_specs is not None:
      num_out_channels = sum(
          num_classes for _, num_classes in self.inout_specs.values())
    else:
      num_out_channels = 3

    self.head = nn.Dense(
        num_out_channels * np.prod(self.patch_size),
        name="decoder_head", **kw)

  def encode(
      self,
      x: jax.Array,
      *,
      train: bool = False,
  ) -> tuple[jax.Array, jax.Array]:
    if self.inout_specs is not None:
      one_hot_inputs = []
      for in_ch, num_classes in self.inout_specs.values():
        one_hot_inputs.append(nn.one_hot(x[..., in_ch], num_classes))
      x = jnp.concatenate(one_hot_inputs, axis=-1)
    x = self.embedding(x)
    x = einops.rearrange(x, "b h w c -> b (h w) c")

    x, _ = self.encoder(x + self.pos_embedding_encoder, deterministic=not train)

    if self.bottleneck_resize:
      x = einops.rearrange(x, "b (h w) c -> b h w c",
                           h=self.grid_size[0], w=self.grid_size[1])
      l = int(np.round(self.code_len ** 0.5))
      x = jax.image.resize(
          x, (x.shape[0], l, l, x.shape[3]),
          method="linear")
      x = einops.rearrange(x, "b h w c -> b (h w) c")
    else:
      x = jnp.einsum("btc,tn->bnc", x, self.bottleneck_downsample)

    x = self.encoder_head(x)

    mu, logvar = jnp.split(x, 2, axis=-1)
    return mu, logvar

  def decode(
      self,
      x: jax.Array,
      train: bool = False,
  ) -> jax.Array | Mapping[str, jax.Array]:
    x = self.decoder_stem(x)

    if self.bottleneck_resize:
      l = int(np.round(self.code_len ** 0.5))
      x = einops.rearrange(x, "b (h w) c -> b h w c", h=l, w=l)
      x = jax.image.resize(
          x, (x.shape[0], self.grid_size[0], self.grid_size[1], x.shape[3]),
          method="linear")
      x = einops.rearrange(x, "b h w c -> b (h w) c")
    else:
      x = jnp.einsum("bnc,nt->btc", x, self.bottleneck_upsample)

    x, _ = self.decoder(x + self.pos_embedding_decoder, deterministic=not train)
    x = self.head(x)
    # c = 3 for RGB images
    x = einops.rearrange(x, "b (h w) (p q c) -> b (h p) (w q) c",
                         h=self.grid_size[0], w=self.grid_size[1],
                         p=self.patch_size[0], q=self.patch_size[1])

    if self.inout_specs is None:
      x = jnp.clip(x, -1.0, 1.0)
    else:
      x_dict = {}
      channel_index = 0
      for name, (_, num_channels) in self.inout_specs.items():
        x_dict[name] = x[..., channel_index : channel_index + num_channels]
        channel_index += num_channels
      x = x_dict

    return x


def load(
    init_params: Any,
    init_file: str,
    model_params: Any = None,
    dont_load: Sequence[str] = (),
) -> Any:
  """Loads params from init checkpoint and merges into init_params."""
  del model_params
  params = flax.core.unfreeze(utils.load_params(init_file))
  if init_params is not None:
    params = common.merge_params(params, init_params, dont_load)
  return params