File size: 6,124 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Transformer encoders both for text and for images."""

import importlib
from typing import Any, Optional, Tuple, Union
from absl import logging

from big_vision import utils
import flax.linen as nn
import jax.numpy as jnp

ConfigDict = Any


class Model(nn.Module):
  """Two towers transformer."""
  image: Optional[ConfigDict] = None
  text: Optional[ConfigDict] = None
  text_model: str = "proj.image_text.text_transformer"
  image_model: str = "vit"
  out_dim: Union[int, Tuple[int, int]] = 128
  temperature_init: float = 1.0
  bias_init: Optional[float] = None

  @nn.compact
  def __call__(self, image, text=None, **kw):
    """Returns (B,C) image and (B,C) text representations."""

    # Support calling without text or without image, for example for few-shot.
    ztxt, zimg = None, None
    out = {}
    out_dims = self.out_dim
    if isinstance(out_dims, int):
      out_dims = (out_dims, out_dims)

    # Embed the text:
    if text is not None:
      text_model = importlib.import_module(
          f"big_vision.models.{self.text_model}"
      ).Model(**{"num_classes": out_dims[1], **(self.text or {})}, name="txt")

      ztxt, out_txt = text_model(text, **kw)
      for k, v in out_txt.items():
        out[f"txt/{k}"] = v

      # Normalize the embeddings the models give us.
      out["txt/norm"] = jnp.linalg.norm(ztxt, axis=1, keepdims=True)
      out["txt/normalized"] = ztxt = ztxt / (out["txt/norm"] + 1e-8)

    if image is not None:
      image_model = importlib.import_module(
          f"big_vision.models.{self.image_model}"
      ).Model(**{"num_classes": out_dims[0], **(self.image or {})}, name="img")  # pylint: disable=not-a-mapping

      zimg, out_img = image_model(image, **kw)
      for k, v in out_img.items():
        out[f"img/{k}"] = v

      # Normalize the embeddings the models give us.
      out["img/norm"] = jnp.linalg.norm(zimg, axis=1, keepdims=True)
      out["img/normalized"] = zimg = zimg / (out["img/norm"] + 1e-8)

    temp_init = jnp.log(self.temperature_init)
    t = self.param("t",
                   lambda key, shape, dtype: temp_init * jnp.ones(shape, dtype),
                   (1,), jnp.float32)
    out["t"] = jnp.exp(t)

    out["t/parameter"] = t
    if (b_init := self.bias_init) is not None:
      out["b"] = self.param("b", lambda k, s, d: b_init * jnp.ones(s, d),
                            (1,), jnp.float32)

    # We could actually play with pre-multiplying by temperature here, such
    # that out["t"] is nothing special to the trainer anymore.

    return zimg, ztxt, out


def load(init_params, init_files, model_cfg, img_load_kw={}, txt_load_kw={}):  # pylint: disable=dangerous-default-value
  """Loads both towers, `init_files` is now a dict with `img` and `txt` keys."""
  if isinstance(init_files, str):
    init_files = VANITY_NAMES.get(init_files, init_files)

  if isinstance(init_files, str):
    # A shortcut for a single file checkpoint of a two_towers model.
    if "bias_init" in model_cfg.keys():
      logging.info("loading img, txt, t, and b from a single checkpoint.")
      init_files = {k: f"{init_files}:{k}" for k in ("img", "txt", "t", "b")}
    else:
      logging.info("loading img, txt, and t from a single checkpoint.")
      init_files = {k: f"{init_files}:{k}" for k in ("img", "txt", "t")}
  else:
    init_files = {**init_files}  # Shallow copy because we'll pop stuff off.

  if not init_params:  # Convenience to skip checks in colab.
    init_params = {"img": None, "txt": None}
  restored_params = {**init_params}

  img_init = init_files.pop("image", init_files.pop("img", None))
  if img_init:
    restored_params["img"] = importlib.import_module(
        f"big_vision.models.{model_cfg.get('image_model', 'vit')}"
    ).load(init_params["img"], img_init, model_cfg.image, **img_load_kw)

  txt_init = init_files.pop("text", init_files.pop("txt", None))
  if txt_init:
    restored_params["txt"] = importlib.import_module(
        f"big_vision.models.{model_cfg.get('text_model', 'proj.image_text.text_transformer')}"  # pylint: disable=line-too-long
    ).load(init_params["txt"], txt_init, model_cfg.text, **txt_load_kw)

  t_init = init_files.pop("temperature", init_files.pop("t", None))
  if t_init:
    restored_params["t"] = utils.load_params(t_init)

  b_init = init_files.pop("bias", init_files.pop("b", None))
  if b_init:
    restored_params["b"] = utils.load_params(b_init)

  assert not init_files, (
      f"There's something unused left in `config.model_init`. You probably got "
      f"a typo. Here it is: {init_files}")

  return restored_params


# Shortcut names for some canonical paper checkpoints:
VANITY_NAMES = {
    # pylint: disable=line-too-long
    # SigLIP image encoder checkpoints from https://arxiv.org/abs/2303.15343
    "SigLIP B/16 224": "gs://big_vision/siglip/webli_en_b16_224_63724782.npz",
    "SigLIP B/16 256": "gs://big_vision/siglip/webli_en_b16_256_60500360.npz",
    "SigLIP B/16 384": "gs://big_vision/siglip/webli_en_b16_384_68578854.npz",
    "SigLIP B/16 512": "gs://big_vision/siglip/webli_en_b16_512_68580893.npz",
    "SigLIP L/16 256": "gs://big_vision/siglip/webli_en_l16_256_60552751.npz",
    "SigLIP L/16 384": "gs://big_vision/siglip/webli_en_l16_384_63634585.npz",
    "SigLIP So400m/14 224": "gs://big_vision/siglip/webli_en_so400m_224_57633886.npz",
    "SigLIP So400m/14 384": "gs://big_vision/siglip/webli_en_so400m_384_58765454.npz",
    "SigLIP B/16-i18n 256": "gs://big_vision/siglip/webli_i18n_b16_256_66117334.npz",
    # pylint: enable=line-too-long
}