File size: 15,266 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
# Copyright 2022 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Inference."""
import functools

from typing import Any, Callable, Optional, Tuple

import flax
from flax import linen as nn
import jax
from jax import lax
from jax import numpy as jnp

import numpy as np


EOS_ID = 1
NEG_INF = np.array(-1.0e7)  # Effective negative infinity.


GenerateFn = Callable[...,
                      Tuple[jnp.ndarray, jnp.ndarray, Optional[jnp.ndarray]]]


def temperature_sampling(*args, temperature=1.0, top_k=0, top_p=0.0, **kwargs):
  """Convenience wrapper for temperature sampling."""
  return generate(*args, generate_fn=_temperature_sampling,
                  temperature=temperature,
                  top_k=top_k,
                  top_p=top_p,
                  **kwargs)


def topk_sampling(*args, temperature=1.0, top_k=20, **kwargs):
  """Convenience wrapper for top-k sampling."""
  return generate(*args, generate_fn=_temperature_sampling,
                  temperature=temperature,
                  top_k=top_k,
                  top_p=0.0,
                  **kwargs)


def nucleus_sampling(*args, temperature=1.0, top_p=0.2, **kwargs):
  """Convenience wrapper for nucleus sampling."""
  return generate(*args, generate_fn=_temperature_sampling,
                  temperature=temperature,
                  top_k=0,
                  top_p=top_p,
                  **kwargs)


def argmax_sampling(*args, **kwargs):
  """Convenience wrapper for argmax sampling."""
  return generate(*args, generate_fn=_temperature_sampling,
                  temperature=1e-7,
                  top_k=0,
                  top_p=0.0,
                  **kwargs)


def generate(params, inputs, prompts, seed, *,
             model: nn.Module,
             generate_fn: GenerateFn,
             num_samples: int = 1,
             prefill: bool = False,
             eos_token: int = EOS_ID,
             **generate_fn_kwargs):
  """Generate sequence with fast decoding beam search on a batch.

  Model must support:
    encode(inputs) -> encoded, or encode(*inputs) -> encoded.
    decode(encoded, prompts, decode=True/False, max_decode_length) -> logits

  Args:
    params: model parameters.
    inputs: either a single `jnp.ndarray` of e.g. images, or
      a tuple of inputs which are passed via `model.encode(*inputs)`.
    prompts: [batch_size, max_decode_len] forced tokens for generation.
      prompts need to finish with 0 token, they should not contain the end
      markers. If no prompting is required, pass an all zeros tensor.
    seed: PRNG key for random sampling.
    model: object with methods encode and decode.
    generate_fn: search or sampling function to generate sequences.
    num_samples: number of samples to generate per item.
    prefill: whether to prefill cache.
    eos_token: if of end-of-sentence token for target vocabulary.
    **generate_fn_kwargs: generate fn specific kwargs.

  Returns:
    Top-scoring sequences (worst scores first).
      [batch_size, num_samples, max_decode_len]
    Scores of the generated sequences (worst scores first). The
      returned scores are modified log probabilities. May be absent.
      [batch_size, max_decode_len]
    Log probs for the generated tokens. May be absent.
      [batch_size, num_samples, max_decode_len]
  """
  _, max_decode_len = prompts.shape
  decode_kwargs = {"max_decode_length": max_decode_len}

  def encode(model, inputs):
    if not isinstance(inputs, tuple):
      inputs = (inputs,)
    return model.encode(*inputs)

  encoded_inputs = nn.apply(encode, model)(params, inputs)
  if isinstance(encoded_inputs, tuple):
    encoded_inputs, enc_pos_emb = encoded_inputs
    decode_kwargs["enc_pos_emb"] = enc_pos_emb

  def init_cache(model):
    encoded = jnp.zeros_like(encoded_inputs)
    targets = jnp.zeros_like(prompts)
    return model.decode(encoded, targets, decode=True, **decode_kwargs)

  cache = nn.apply(init_cache, model, mutable=True)(params)[1]["cache"]

  def prefill_cache(model, encoded, targets):
    return model.decode(encoded, targets, prefill=True, **decode_kwargs)

  if prefill:
    cache = nn.apply(prefill_cache, model, mutable=True)(
        {"params": params["params"], "cache": cache},
        encoded_inputs, prompts)[1]["cache"]

  def tokens_to_logits(tokens, cache):
    def decode_step(model, tokens):
      encoded = expand_samples_dim_and_flatten(
          encoded_inputs, num_samples)
      return model.decode(encoded, tokens, decode=True, **decode_kwargs)

    logits, aux = nn.apply(decode_step, model, mutable=True)(
        {"params": params["params"], "cache": cache}, tokens)
    return logits.squeeze(axis=1), aux["cache"]

  beam_seqs, scores, logprobs = generate_fn(
      prompts,
      cache,
      tokens_to_logits,
      num_samples=num_samples,
      eos_token=eos_token,
      max_decode_len=max_decode_len,
      seed=seed,
      **generate_fn_kwargs)
  return beam_seqs, scores, logprobs


def expand_samples_dim(x, num_samples):
  """Creates new dimension in non-scalar array and tiles into it."""
  if x.ndim == 0:  # ignore scalars (e.g. cache index)
    return x
  x = jnp.expand_dims(x, axis=1)
  tile_dims = [1] * x.ndim
  tile_dims[1] = num_samples
  return jnp.tile(x, tile_dims)


def flatten_samples_dim(x):
  """Flattens samples dim into batch dim."""
  if x.ndim == 0:  # ignore scalars (e.g. cache index)
    return x
  return x.reshape((x.shape[0] * x.shape[1],) + x.shape[2:])


def unflatten_samples_dim(x, batch_size, num_samples):
  """Unflattens first dim into batch and samples dims."""
  if x.ndim == 0:  # ignore scalars (e.g. cache index)
    return x
  assert batch_size * num_samples == x.shape[0]
  return x.reshape((batch_size, num_samples) + x.shape[1:])


def expand_samples_dim_and_flatten(x, num_samples):
  """Expands the each batch item by num_samples in batch dimension."""
  return flatten_samples_dim(expand_samples_dim(x, num_samples))


def cache_map(fn, cache):
  """Maps function over caches, even multiple caches in various layers."""
  frozen = isinstance(cache, flax.core.FrozenDict)
  if frozen:
    cache = flax.core.unfreeze(cache)
  flat_cache = flax.traverse_util.flatten_dict(cache)
  # Exclude cached relative position bias from beam expansion, etc.
  keyvals = {k: v for k, v in flat_cache.items() if k[-1] != "cached_bias"}
  keyvals = jax.tree_map(fn, keyvals)
  flat_cache.update(keyvals)
  new_cache = flax.traverse_util.unflatten_dict(flat_cache)
  if frozen:
    new_cache = flax.core.freeze(new_cache)
  return new_cache


@flax.struct.dataclass
class LoopState:
  """Internal state of the temperature sampling loop."""
  # Position in the sequence that we are currently looking at.
  cur_index: int
  # Cache for fast auto-regressive decoding.
  cache: Any
  # Flags indicating whether the sequence reached eos [B*N].
  flags_finished: jnp.ndarray
  # Sequences being generated [B*N, L+1]. Note: sequences start with 0 token.
  sequences: jnp.ndarray
  scores: jnp.array  # Total sequence scores per batch element [B*N].
  logprobs: jnp.array  # Logprobs of selected tokens [B*N, L].
  rng: jnp.ndarray  # PRNGKey of the loop state.


def _init_state(prompts, cache, init_rng_key, num_samples):
  batch_size, max_decode_len_plus_one = prompts.shape
  # Add extra samples dim to attention cache pytree elements.
  cache = cache_map(
      lambda x: expand_samples_dim_and_flatten(x, num_samples), cache)
  return LoopState(
      cur_index=0,
      cache=cache,
      flags_finished=jnp.zeros((batch_size*num_samples), dtype=jnp.bool_),
      sequences=expand_samples_dim_and_flatten(prompts, num_samples),
      scores=jnp.zeros((batch_size*num_samples)),
      logprobs=jnp.zeros((batch_size*num_samples, max_decode_len_plus_one-1)),
      rng=init_rng_key)


def _should_temperature_sampling_continue(state, max_decode_len):
  """Check if we should continue or not."""

  max_length_not_reached = state.cur_index < max_decode_len - 1
  all_seqs_finished = jnp.all(state.flags_finished)
  return max_length_not_reached & (~all_seqs_finished)


def _temperature_sampling_iteration(state, tokens_to_logits, temperature, eos,
                                    top_k, top_p, mask_token_ids=()):
  """Temperature sampling step function."""

  rng_sampling, rng = jax.random.split(state.rng)

  # 1. Use the model to generate a distribution over the vocabulary (for the
  # next token) and sample from it, optionally applying the temperature.
  # --> [B,].
  cur_tokens = state.sequences[:, state.cur_index]
  logits, new_cache = tokens_to_logits(cur_tokens[:, None], state.cache)
  assert logits.ndim == 2, ("tokens_to_logits expected to return a"
                            f"2-dimensional array [B, V], got {logits.ndim}"
                            "dimensions.")
  logprobs = jax.nn.log_softmax(logits)

  # Do not sample special tokens in with ids in mask_token_ids.
  if mask_token_ids:
    probs = jax.nn.softmax(logits)
    for i in mask_token_ids:
      probs = probs.at[:, i].set(0.)
    probs = probs / jnp.sum(probs, -1, keepdims=True)
    logits = jnp.log(probs)

  if top_p:  # Nucleus sampling.
    logits_sorted = jnp.sort(logits, axis=-1)[:, ::-1]
    sorted_cum_probs = jnp.cumsum(
        jax.nn.softmax(logits_sorted, axis=-1), axis=-1)
    cutoff_index = jnp.sum(sorted_cum_probs < top_p, axis=-1, keepdims=True)
    cutoff_logit = jnp.take_along_axis(logits_sorted, cutoff_index, axis=-1)
    logits = jnp.where(logits < cutoff_logit,
                       jnp.full_like(logits, NEG_INF), logits)
  if top_k:
    topk_logits, topk_indices = jax.lax.top_k(logits, top_k)
    topk_token = jax.random.categorical(rng_sampling, topk_logits / temperature)
    sampled_tokens = jnp.squeeze(
        jnp.take_along_axis(topk_indices, jnp.expand_dims(topk_token, -1),
                            axis=-1), axis=-1)
  else:
    sampled_tokens = jax.random.categorical(rng_sampling, logits / temperature)

  sampled_logprobs = jnp.squeeze(jnp.take_along_axis(
      logprobs, jnp.expand_dims(sampled_tokens, axis=1), axis=-1), axis=-1)

  # 2. Use the sampled tokens to update the sequences that did not finish yet,
  # but only if they are out of prompt.
  next_tokens = state.sequences[:, state.cur_index + 1]
  next_logprobs = jnp.squeeze(jnp.take_along_axis(
      logprobs, jnp.expand_dims(next_tokens, axis=1), axis=-1), axis=-1)
  out_of_prompt = next_tokens == 0
  update_pos = out_of_prompt * (~state.flags_finished)
  next_tokens = sampled_tokens * update_pos + next_tokens * (~update_pos)
  sampled_logprobs = update_pos*sampled_logprobs + ~update_pos*next_logprobs
  sequences = state.sequences.at[:, state.cur_index + 1].set(next_tokens)
  scores = state.scores + sampled_logprobs
  seqs_logprobs = state.logprobs.at[:, state.cur_index].set(sampled_logprobs)

  # 3. Update the finished flags. Only out of prompts seqs can finish.
  flags_finished = out_of_prompt & (state.flags_finished |
                                    (sampled_tokens == eos))
  return LoopState(
      cur_index=state.cur_index+1,
      cache=new_cache,
      flags_finished=flags_finished,
      sequences=sequences,
      scores=scores,
      logprobs=seqs_logprobs,
      rng=rng)


def _temperature_sampling(prompts, cache, tokens_to_logits, num_samples=1,
                          eos_token=EOS_ID, max_decode_len=None,
                          seed=0, temperature=1., top_k=0, top_p=0.0,
                          mask_token_ids=()):
  """Temperature sampling.

  Purely stochastic sampling-based greedy procedure to generate sequences. Every
  next token in the sequence is sampled from the discrete vocab distribution
  produced by the auto-regressive sequence model. Optionally we can adjust the
  distribution by changing the temperature before sampling from it. Generated
  sequences are no longer than max_decode_len.

  Args:
    prompts: optional prompts [B, L]. By default (None), we call free form
      generation without any prompts. Prompt sequences should finish with
      trailing zeros and should not contain eos tokens.
    cache: cache for fast decoding (generation).
    tokens_to_logits: fast autoregressive decoder function taking single token
      slices and cache and returning next-token logits and updated cache.
    num_samples: int: number of samples to generate per batch item. Note, no
      deduplication is performed, and in dependence of parameter settings, same
      sequences could be generated and returned.
    eos_token: end-of-sentence token.
    max_decode_len: maximal length of generated sequences (L).
    seed: PRNGKey for random sampling.
    temperature: positive real-valued sampling temperature. By default we sample
      from the original distribution. As the temperature approaches 0., the
      entire distribution concentrates on the most probable outcome(s).
    top_k: limit sampling to only top-k logits. Zero means no limit.
    top_p: limit sampling to smallest number of top logits with max cumulative
      prob <= top_p. Zero means no limit. Cannot use both top_p and top_k.
    mask_token_ids: if set then tokens with given ids are not sampled.

  Returns:
    sequences: generated sequences [B, num_samples, L].
    scores: not implemented in the naive temperature sampling [B, num_samples].
    logprobs: Log probabilities for the generated tokens [B, num_samples, L].
  """
  if top_k > 0 and top_p > 0.0:
    raise ValueError(f"Cannot use both top_k {top_k} and top_p {top_p}.")
  if max_decode_len is None:
    max_decode_len = prompts.shape[1]
  # We will start generating sequences from 0 token.
  prompts = jnp.pad(prompts, ((0, 0), (1, 0)))
  eos = jnp.array(eos_token)
  if isinstance(seed, int):
    seed = jax.random.PRNGKey(seed)

  # Initialize the state.
  loop_init_state = _init_state(prompts, cache, seed, num_samples)
  should_temperature_sampling_continue_fn = functools.partial(
      _should_temperature_sampling_continue,
      max_decode_len=max_decode_len+1)  # Account for prompt padding with 0's.
  temperature_sampling_iteration_fn = functools.partial(
      _temperature_sampling_iteration,
      tokens_to_logits=tokens_to_logits,
      temperature=temperature, top_k=top_k, top_p=top_p,
      eos=eos, mask_token_ids=mask_token_ids)

  # Run the temperature sampling and generate the sequences.
  final_state = lax.while_loop(
      should_temperature_sampling_continue_fn,
      temperature_sampling_iteration_fn,
      loop_init_state)

  # Return the generated sequences, discarding the 0 token in the beginning.
  return (
      final_state.sequences[:, 1:].reshape((-1, num_samples, max_decode_len)),
      final_state.scores.reshape((-1, num_samples)),
      final_state.logprobs.reshape((-1, num_samples, max_decode_len)))